

BAT32G133 Datasheet

Value-line Arm®-based 32-bit MCU with up to 32KB Flash,

Analog functions, Timers and Communication interfaces.

V1.5

Please note the following Policyrelating to the CMS Intellectual Property

* China Micro Semicon Co., Ltd., has applied for a patent and enjoys absolute legal rights. The patents related to MCU or other products of China Micro Semicon Co., Ltd., have not been authorized for use. Any company, organization or individual that infringes the patent rights of China Micro Semicon Co., Ltd., improperly, China Micro Semicon Co., Ltd., will take all possible legal actions to stop the infringer's improper infringement, and command the payment from the losses of China Micro Semicon Co., Ltd., due to the infringement, or the illegal interests from the infringer.

* The name and logo of China Micro Semicon Co., Ltd., are registered trademarks of China Micro Semicon Co., Ltd.

* China Micro Semicon Co., Ltd., reserves the right to further explain the improvements in reliability, functionality and design of the products in the specification. And China Micro Semicon Co., Ltd., is not responsible for the use of the specifications. The application mentioned in the article is only for the purpose of illustration, and China Micro Semicon Co., Ltd., does not ensure or declare that these applications may be applied without further modifications, and it's not recommended to use its products in areas that may be hazardous to human body due to malfunction or other reasons. China Micro Semicon Co., Ltd.,'s products are not authorized for using as a critical device in life-saving, life-sustaining devices or systems. China Micro Semicon Co., Ltd., has the right to modify the product without prior notice. If you want to get the latest information, please refer to our website. http://www.mcu.com.cn

Features

- Ultra-low power consumption technology
- Operating Voltage:2.0V~5.5V
- ➢ Operating ambient temperature: -40°C ~105°C
- ➤ Low power modes: SLEEP, DEEPSLEEP
- Operating power consumption: RUN mode: 35uA/MHz@64MHz DEEPSLEEP mode:0.45uA DEEPSLEEP mode (+32.768K+RTC):0.7uA

• Core

- > ARM®32-bitCortex®-M0+ CPU
- > Operating frequency:32KHz~64MHz

Memories

- > 32KB Flash Memory: program/data flash
- > 1.5KB Special data flash memory
- > 4KB SRAM Memory (With Parity)

• Reset and power management

- Power-on reset circuit.
- On-chip voltage detector (LVD) (Select interrupt and reset from 10 levels)
- Clock
 - > Main clock oscillator: 1MHz to 20MHz
- Sub clock oscillator: 32.768KHz
- High-speed on-chip oscillator: 1MHz to 64MHz
- > Low-speed on-chip oscillator: 15KHz/30KHz

• Multiplier/divider

Integer 32bit multiplier

• DMA

- Interupt trigger start.
- Transfer modes: Normal mode, Repeat mode, Block mode and Chain transfers mode
- Transfer space: 4 GB area from 0000 0000h to FFFF FFFh except reserved areas

• EVENTC

- Event Link Controller
- Event signals (15 types) can be used as activation sources for operating any one of 3 types of peripheral functions
- Analog

12-Bit A/D Converter

Conversion range: 0 to Vrefp or VDD Analog input: Up to 15 channels, Internal reference voltage (1.45 V) and temperature sensor

Conversionrate: 1.42Msps

- Comparator (CMP) × 2: The external reference voltage or internal reference voltage can be selected as the reference voltage
- Programmable gain amplifier (PGA)×2: GAIN x4/8/10/12/14/16/32 can be selected

• GPIO

- I/O port:13 to 22
- Can be set to N-ch open drain and on-chip pull-up resistor
- Digital function can be freely assigned to any pin
- > On-chip clock output/buzzer output controller
- Serial wire debug (SWD)

• Timers

- > 16-bit timer: 8 channels
- 15-bit interval timer: 1 channel
- Real-time clock (RTC): 1 channel
- Watchdog timer (WWDT): 1 channel (operable with the dedicated low-speed on-chip oscillator)
- SysTick timer

Serial interfaces

- > SPI: 6 channels
- ➢ UART:3 channels
- > I2C:1 channel
- IrDA:1 channel

Safety

- ➢ IEC/UL 60730
- Illegal memory access
- > SRAM Parity Error Check
- > Cyclic Redundancy Check (CRC) Calculator
- SFR protection
- 128-bit unique ID
- Flash secondary protection in debug mode (level1: only erase the entire area of flash; level2: the emulator connection is invalid)

Packages

> QFN24, QFN20, SSOP24, TSSOP20

1 Overview

1.1 Introduction

The ultra-low-power BAT32G133 incorporates a high-performance ARM®Cortex®-M0+ 32-bit RISC core running up to 64 MHz and high-speed embedded flash memory (SRAM maximum 4KB, program/data flash 32KB). This product integrates I2C, SPI, UART, LIN multiple standard interfaces. Integrated 12bitA/D converter, temperature sensor, 8bitD/A converter, comparator, programmable gain amplifier. Among them, the 12bitA/D converter can collect external sensor signals to reduce the system design cost. The temperature integrated sensor can realize real-time monitoring of the external ambient temperature.

BAT32G133 has particularly excellent low-power performance, with two low-power modes of sleep and deep sleep, to flexible design for users. Its operating power consumption is 35uA/MHz@64MHz, and the power consumption in deep sleep mode is only 0.45uA, which is suitable for battery-powered low-power devices. At the same time, due to the integrated event link controller, direct connection between hardware modules can be achieved without CPU intervention, which is faster than the use of interrupt response, while reducing the CPU's activity frequency and extending battery life.

These characteristics make the BAT32G133 microcontroller series widely applicable to alarm, sensor, smart locks and other smart home equipment, wireless monitoring equipment, portable devices that require power consumption, etc.

1.2 Ordering Information

Figure 1 - 1 Part Number, Memory Size, and Package of BAT/G133

Product list:

Pin count	Package	Application	Ordering Part Number
20 pins	20TSSOP	Consumption	BAT32G133GC20SA
	(6.5x4.4mm, 0.65mm pitch)	Home appliances	
		Industrial control	
	20QFN	Consumption	BAT32G133GC20NB
	(3x3mm, 0.4mm pitch)	Home appliances	
		Industrial control	
24 pins	24SSOP	Consumption	BAT32G133GC24SS
	(8.65x3.9mm, 0.635mm pitch)	Home appliances	
		Industrial control	
	24QFP (4x4mm_0 5mm pitch)	Consumption	BAT32G133GC24NA
	(4x4mm, 0.5mm pitch)	Home appliances	
		Industrial control	

FLASH, SRAM:

Flash	Special data	SRAM	BAT32G133			
memory	flash memory		20 Pins 24 Pins			
32KB	1.5KB	4KB	BAT32G133G20	BAT32G133GC24		

http://www.mcu.com.cn

1.3 Pin Configuration (Top View)

1.3.1 20-pin products

• 20TSSOP (6.5x4.4mm, 0.65mm pitch)

Remark: Digital function supports any pin configuration except P00.

• 20QFN (3x3mm, 0.4mm pitch)

Remark: Digital function supports any pin configuration except P00.

1.3.2 24-pin products

• 24SSOP (8.65x3.9mm, 0.635mm pitch)

Remark: Digital function supports any pin configuration except P00.

• 24QFN (4x4mm, 0.5mm pitch)

Remark: Digital function supports any pin configuration except P00.

2 Block Diagram

3 Memory Space

4 PIN Funtions

4.1 Port Functions

Port	Alter	rnate Function	Pin function		Pin	NO.	
Name			configuration registers	20TSSOP	20QFN	24SSOP	24QFN
			pxxcfg[5:0]				
P00	GPIO		00H	4	1	5	2
	RESETB		-				
P01	GPIO		00H	6 3	3	7	4
	X1		-				
	Digital function	INTP0	02H				
		INTP1	03H				
		INTP2	04H				
		INTP3	05H				
		TI00	06H				
		TI01	07H				
		TI02	08H				
		TI03	09H				
		TI10	0AH	ļ			
		TI11	0BH				
		TI12	0CH				
		TI13	0DH				
		ТО00	0EH				
		TO01	0FH				
		TO02	10H				
		TO03	11H				
		TO10	12H				
		TO11	13H				
		TO12	14H				
		TO13	15H				
		SCLA0	16H				
		SDAA0	17H				
		CLKBUZ0	18H			ļ	
		CLKBUZ1	19H				
		VCOUT0	1AH				
		VCOUT1	1BH	ļ			
		RTC1HZ	1CH				
		SS00	1FH				
		SCLK00	20H				
		SCLK01	21H				
		SCLK10	22H				
		SCLK11	23H				
		SCLK20	24H				
		SCLK21	25H		ļ		
		SDI00/RxD0	26H				
		SDI01	27H				
		SDI10/RxD1	28H				
		SDI11	29H				
		SDI20/RxD2	2AH				
		SDI21	2BH				

		SDO00/TxD0	2CH				
		SDO00/TXD0	2DH				
		SDO10/TxD1	2EH				
		SDO10/1XD1	2FH				
		SDO20/TxD2	30H				
		SDO20/1xD2 SDO21					
P02	CDIO	30021	31H	5	2	6	3
P02	GPIO X2/EXCLK		00H -	5	2	0	3
		Sama as D01	- X				
P10	Digital function GPIO	Same as P01	00H	9	6	10	7
FIU	Digital function	Sama as D01	X	9	0	10	1
P11		Same as P01		10	7	11	8
PII	GPIO Digital function	Same as P01	00H X	10	1	11	0
D 40	Digital function	Same as PUT			0	10	9
P12	GPIO		00H	11	8	12	9
	XT1	Como DO4	-				
D40	Digital function	Same as P01	X	40	^	40	40
P13	GPIO		00H	12	9	13	10
	XT2/EXCLKS	Come of D04	-				
DOC	Digital function	Same as P01	X		40		40
P20	GPIO		00H	19	16	22	19
	ANIO		-				
	VCIN10		-				
	SWDIO	0 50	-				
DO 1	Digital function	Same as P01	X				
P21	GPIO		00H	20	17	23	20
	ANI1		-				
	VCIN11		-				
	SWCLK		-				
	Digital function	Same as P01	X			24	
P22	GPIO		00H	-	-		21
	ANI2		-				
B 07	Digital function	Same as P01	X				
P23	GPIO		00H		-	24	22
	ANI3		-				
	Digital function	Same as P01	X				
P24	GPIO		00H	1	18	2	23
	ANI4	I	-				
	Digital function	Same as P01	Х				
P25	GPIO		00H	2	19	2	24
	ANI5		-				
	VCIN13		-				
	AVREFM		-				
	Digital function	Same as P01	Х				
P26	GPIO		00H	3	20	4	1
	ANI6		-				
	VCIN12		-				
	AVREFP	I	-				
	Digital function	Same as P01	Х				
P30	GPIO		00H	13	10	14	11
	ANI7		-				
	VREF0		-]			
	PGA1GND		-				
	Digital function	Same as P01	Х				
P31	GPIO		00H	14	11	15	12
	ANI8		-				

	PGA1IN		-							
	PGA0O		-							
	Digital function	Same as P01	Х		İ					
P32	GPIO		00H	15	12	16	13			
	ANI9		-							
	PGA0IN		-							
	PGA10		-							
	VCIN0		-							
	Digital function	Same as P01	Х							
P33	GPIO		00H	-	-	17	14			
	ANI10		-							
	Digital function	Same as P01	Х							
P34	GPIO		00H	-	-	18	15			
	ANI11		-							
	Digital function	Same as P01	Х							
P35	GPIO		00H	16	13	19	16			
	ANI12		-							
	PGA0GND		-							
	Digital function	Same as P01	Х							
P36	GPIO		00H	17	14	20	17			
	ANI13		-							
	Digital function	Same as P01	Х							
P37	GPIO		00H	18	15	21	18			
	ANI14		-							
	Digital function	Same as P01	Х							
VDD	Power		-	8	5	9	6			
VSS	Ground		-	7	4	8	5			

Remark:

"-" indicates that there is no need to set the value of pxxcfg[5:0];

"X" means to set the value of pxxcfg[5:0] according to the digital function;

The "-" in the Pin NO. column indicates that the pin is not packaged, and the unpackaged pin does not need to be processed.

4.2 Pins Other Than Port Pins

(1/2)

Function Name	I/O	Function
ANIO ~ ANI14	I	A/D converter analog input
INTP0 ~ INTP3	I	External interrupt request input pin for which the valid edge (rising
		edge, falling edge, or both rising and falling edges) can
VCIN0	I	Comparator 0 analog voltage input
VCIN10, VCIN11, VCIN12,	I	Comparator 1 analog voltage input/reference voltage input
VCIN13		
VREF0	I	Comparator 0 reference voltage input
VCOUT0, VCOUT1	0	Comparator output
PGA0IN, PGA1IN	I	PGA voltage input
PGA0GND, PGA1GND	I	PGA reference voltage input
CLKBUZ0, CLKBUZ1	0	Clock output/buzzer output
RTC1HZ	0	Real-time clock correction clock (1 Hz) output
RESETB	I	This is the active-low system reset input pin.
IrRxD	I	IrDA receive data
IrTxD	0	IrDA transmit data
RxD0 ~ RxD2	I	Serial data input pins of serial interface UART0 to UART2
TxD0 ~ TxD2	0	Serial data output pins of serial interface UART0 to UART2
SCLK00, SCLK01, SCLK10,	I/O	Serial clock I/O pins of serial interface SSPI00, SSPI01,
SCLK11, SCLK20, SCLK21		SSPI10, SSPI11, SSPI20, and SSPI21
SDI00, SDI01, SDI10,	I	Serial data input pins of serial interface SSPI00, SSPI01,
SDI11, SDI20, SDI21		SSPI10, SSPI11, SSPI20, and SSPI21
SS00	I	Chip select input pin of serial interface SSPI00
SDO00, SDO01, SDO10,	0	Serial data output pins of serial interface SSPI00,
SDO11, SDO20, SDO21		SSPI01, SSPI10, SSPI11, SSPI20, and SSPI21
SCLA0	I/O	Serial clock I/O pins of serial interface IICA0
SDAA0	I/O	Serial data I/O pins of serial interface IICA0

(2/2)

Function Name	I/O	Function
TI00 ~ TI03	I	The pins for inputting an external count clock/capture trigger
TO00 ~ TO03	0	Timer output pins of 16-bit Timer4
TI10 ~ TI13	I	The pins for inputting an external count clock/capture trigger
TO10 ~ TO13	0	Timer output pins of 16-bit Timer4
X1, X2	-	Resonator connection for main system clock
EXCLK	I	External clock input for main system clock
XT1, XT2	-	Resonator connection for subsystem clock
EXCLKS	I	External clock input for subsystem clock
VDD	-	Positive power supply
AVREFP	I	A/D converter reference potential (+ side) input
AVREFM	I	A/D converter reference potential (- side) input
VSS	-	Ground
SWDIO	I/O	SWD data line
SWCLK	I	SWD clock line

Remark Use bypass capacitors (about 0.1 uF) as noise and latch up countermeasures with relatively thick wires at the shortest

distance to VDD to VSS lines.

5 Functional Overview

5.1 ARM[®] Cortex[®]-MO+ Core with MPU

Cortex-M0(+) processor is a new generation of ARM processors for embedded systems. It provides a low-cost platform for low pin count and low power consumption microcontrollers, while providing excellent computing performance and advanced system response to interrupts.

The 32-bit RISC processor of the Cortex-M0(+) processor provides excellent code efficiency and provides high-performance expectations of the ARM core, which is different from 8-bit and 16-bit devices of the same memory size. The Cortex-M0(+) processor has 32 address lines and a storage space of up to 4G.

BAT32G133 uses an embedded ARM core, so it is compatible with all ARM tools and software.

5.2 Memory

5. 2. 1 **Flash**

The MCU provides an on-chip flash memory support to program, erase and rewrite. Functions is shown in below:

- > 32KB Flash Memory (program/data flash).
- > 1.5 KB Special data flash memory
- Support sector erase, sector size is 512byte, erase time 4ms
- > Support byte/half-word/word (32bit) programming, programming time 24us

5. 2. 2 **SRAM**

The MCU provides an on-chip high-speed SRAM module of 4KB with either parity-bit checking.

5.3 **DMA**

The built-in DMA (Direct Memory Access) controller can realize the function of data transfer between memories without using the CPU.

- Support the start of DMA through the interruption of peripheral functions, which can realize real-time control through communication, timer and A/D.
- > Transfer space: 4 GB area from 0000 0000h to FFFF FFFFh except reserved areas.
- Support 4 transfer modes (normal transfer mode, repeat transfer mode, block transfer mode and chain transfer mode).

5.4 Event Link Controller (EVENTC)

The Event Link Controller (EVENTC) uses the event requests generated by various peripheral modules as source signals to connect them to different modules, allowing direct link between the modules without CPU intervention.

The EVENTC has the following functions:

- Capable of directly linking event signals from 15 types of peripheral functions to specified peripheral functions.
- Event signals can be used as activation sources for operating any one of 3 types of peripheral functions.

5.5 Clock Generator

The clock generator generates the clock to be supplied to the CPU and peripheral hardware. The following three kinds of system clocks and clock oscillators are selectable.

5.5.1 Main System Clock

> X1 oscillator:

This circuit oscillates a clock of fX = 1 to 20 MHz by connecting a resonator to X1 pin and X2 pin. Oscillation can be stopped by executing the DEEPSLEEP instruction or setting of the MSTOP bit.

> High-speed on-chip oscillator (High-speed OCO):

The frequency at which to oscillate can be selected from among fHOCO = 64, 48, 32, 24, 16, 12, 8, 6,4, 3, 2, or 1 MHz (TYP.) by using the option byte. After a reset release, the CPU always starts operating with this high-speed on-chip oscillator clock. Oscillation can be stopped by executing the DEEPSLEEP instruction or setting of the HIOSTOP bit. The frequency specified by using an option byte can be changed by using the high-speed on-chip oscillator frequency select register (HOCODIV).

> X2 external main system clock:

An external main system clock (fEX = 1 to 20 MHz) can also be supplied from the EXCLK/X2/P122 pin. An external main system clock input can be disabled by executing the STOP instruction or setting of the MSTOP bit.

5.5.2 Subsystem Clock

XT1 clock oscillator:

This circuit oscillates a clock of fXT = 32.768 kHz by connecting a 32.768 kHz resonator to XT1 pin and XT2 pin. Oscillation can be stopped by setting the XTSTOP bit.

> XT2 external subsystem clock:

An external subsystem clock (fEXS = 32.768 kHz) can also be supplied from the EXCLKS/XT2/P124 pin. An external subsystem clock input can be disabled by the setting of the XTSTOP bit.

5.5.3 Low-speed On-chip Oscillator

> Low-speed on-chip oscillator (Low-speed OCO):

This circuit oscillates a clock of flL = 15 kHz (TYP.).

The low-speed on-chip oscillator clock cannot be used as the CPU clock.

Only the following peripheral hardware runs on the low-speed on-chip oscillator clock.

- Watchdog timer(WWDT)
- Real-time clock(RTC)
- > 15-bit interval timer

5.6 Power Management

5. 6. 1 Power Supply

VDD: External power, voltage range 2.0 to 5.5V

5. 6. 2 Power-on-reset Circuit

The power-on-reset circuit (POR) has the following functions.

- Generates internal reset signal at power on. The reset signal is released when the supply voltage (VDD) exceeds the detection voltage (VPOR). Note that the reset state must be retained until the operating voltage becomes in the range defined of POR function. This can be achieved by utilizing the voltage detection circuit or controlling the externally input reset signal.
- Compares supply voltage (VDD) and detection voltage (VPDR), and then generates internal reset signal when VDD < VPDR. Note that, after power is supplied, this LSI should be placed in the DEEPSLEEP mode, or in the reset state by utilizing the voltage detector or externally input reset signal, before the operation voltage falls below the range defined of POR function. When restarting the operation, make sure that the operation voltage has returned within the range of operation.

5.6.3 Voltage Detector

The operation mode and detection voltages (VLVDH, VLVDL, VLVD) for the voltage detector is set by using the option byte. The voltage detector (LVD) has the following functions.

Cmsemicon®

- The LVD circuit compares the supply voltage (VDD) with the detection voltage (VLVDH, VLVDL, VLVD), and generates an internal reset or internal interrupt signal.
- The detection level for the power supply detection voltage (VLVDH, VLVDL, VLVD) can be selected by using the option byte as one of 10 levels.
- > Operable in DEEPSLEEP mode.
- When the power supply rises, before reaching the working voltage range, it must be kept in the reset state through the voltage detection circuit or external reset. When the power supply drops, it must be transferred to deep sleep mode before it is less than the operating voltage range, or set to the reset state by the voltage detection circuit or external reset.
- > The range of operating voltage varies with the setting of the user option byte.

5.7 Low Power Modes

The product supports two low-power modes with short start-up time:

- SLEEP Mode: When a WFI instruction is executed while SBYCR.SSBY bit is 0, the MCU enters Sleep mode. In this mode, the CPU stops operating but the contents of its internal registers are retained. Other peripheral functions do not stop. Available resets or interrupts in Sleep mode cause the MCU to cancel Sleep mode.
- DEEPSLEEP Mode: When a WFI instruction is executed while SBYCR.SSBY bit is 1, the MCU enters Software Deepsleep mode. In this mode, the CPU, most of the on-chip peripheral functions and oscillators stop. However, the contents of the CPU internal registers and SRAM data, the states of onchip peripheral functions and the I/O Ports are retained. Deepsleep mode allows a significant reduction in power consumption because most of the oscillators stop in this mode.

In either mode, the registers, flags, and data memory retain their contents before being set to standby mode, and also maintain the status of the output latch and output buffer of the input/output port.

5.8 Reset Function

The following seven operations are available to generate a reset signal.

- (1) External reset input via RESETB pin
- (2) Internal reset by watchdog timer program loop detection
- (3) Internal reset by comparison of supply voltage and detection voltage of power-on-reset (POR) circuit
- (4) Internal reset by comparison of supply voltage of the voltage detector (LVD) and detection voltage
- (5) Internal reset by RAM parity error
- (6) Internal reset by illegal-memory access
- (7) software reset

External and internal resets start program execution from the address at 0000H and 0001H when the reset signal is generated.

5.9 Interrupts

The Cortex-M0+ processor has a built-in Nested Vectored Interrupt Controller (NVIC) that supports up to 32 interrupt request (IRQ) inputs and one non-maskable interrupt (NMI) input. In addition, the processor supports multiple internal exceptions.

This product extends 32 maskable interrupt requests (IRQ) and 1 non-maskable interrupt (NMI), and can support up to 64 maskable interrupt sources and one non-maskable interrupt source. The actual number of interrupt sources varies by product.

5.10 Real-timer Clock (RTC)

The real-time clock has the following features.

- > Counters of year, month, week, day, hour, minute, and second.
- > Constant-period interrupt function (period: 0.5 seconds, 1 second, 1 minute, 1 hour, 1 day, 1 month)
- > Alarm interrupt function (alarm: week, hour, minute)
- Pin output function of 1 Hz
- > Support frequency division of sub-system clock or main system clock as RTC running clock
- > Real-time clock interrupt signal (INTRTC) can be used to wake up in deep sleep mode
- > Support a wide range of clock correction functions
 - Caution: The count of year, month, week, day, hour, minutes and second can only be performed when a subsystem clock (fsuB = 32.768 kHz) is selected as the operation clock of the real-time clock. When the low-speed oscillation clock (fiL = 15 kHz/30kHz) is selected, only the constant-period Interrupt function is available.

5.11 Watchdog Timer

The counting operation of the watchdog timer is set by the option byte. The watchdog timer operates on the low-speed on-chip oscillator clock (fIL = 15 kHz/30kHz). The watchdog timer is used to detect an inadvertent program loop. If a program loop is detected, an internal reset signal is generated.

Program loop is detected in the following cases:

- If the watchdog timer counter overflows
- > If a 1-bit manipulation instruction is executed on the watchdog timer enable register (WDTE)
- > If data other than "ACH" is written to the WDTE register
- > If data is written to the WDTE register during a window close period

5.12 SysTick Timer

This timer is dedicated to real-time operating systems, but can also be used as a standard down counter.

Its characteristics are: when the 24-bit down counter self-loading capacity counter reaches 0, there is a shieldable system interruption.

5.13 **Timer4**

The timer4 has eight (two units of four) 16-bit timers. Each 16-bit timer is called a channel and can be used as an independent timer. In addition, two or more "channels" can be used to create a high-accuracy timer.

	1011.
Independent channel operation function	Simultaneous channel operation function
●Interval timer	●One-shot pulse output
●Square wave output	PWM output
External event counter	Multiple PWM output
Divider	
Input pulse interval measurement	
Measurement of high-/low-level width of input signal	
Delay counter	

For details about each function, see the table below.

5.13.1 Independent Channel Operation Function

By operating a channel independently, it can be used for the following purposes without being affected by the operation mode of other channels.

- (1) Interval timer: Each timer of the unit can be used as a reference timer that generates an interrupt (INTTM) at fixed intervals.
- (2) Square wave output: A toggle operation is performed each time INTTMmn interrupt is generated and a square wave with a duty factor of 50% is output from a timer output pin (TO).
- (3) External event counter: Each timer of the unit can be used as an event counter that generates an interrupt when the number of the valid edges of a signal input to the timer input pin (TI) has reached a specific value.
- (4) Divider function (channel 0 only): A clock input from a timer input pin (TI00) is divided and output from an output pin (TO00).
- (5) Input pulse interval measurement: Counting is started by the valid edge of a pulse signal input to a timer input pin (TI). The count value of the timer is captured at the valid edge of the next pulse. In this way, the interval of the input pulse can be measured.
- (6) Measurement of high-/low-level width of input signal: Counting is started by a single edge of the signal input to the timer input pin (TI), and the count value is captured at the other edge. In this way,

the high-level or low-level width of the input signal can be measured.

(7) Delay counter: Counting is started at the valid edge of the signal input to the timer input pin (TI), and an interrupt is generated after any delay period.

5.13.2 Simultaneous Channel Operation Function

By using the combination of a master channel (a reference timer mainly controlling the cycle) and slave channels (timers operating according to the master channel), channels can be used for the following purposes.

- (1) One-shot pulse output: Two channels are used as a set to generate a one-shot pulse with a specified output timing and a specified pulse width.
- (2) PWM (Pulse Width Modulation) output: Two channels are used as a set to generate a pulse with a specified period and a specified duty factor.
- (3) Multiple PWM (Pulse Width Modulation) output: By extending the PWM function and using one master channel and two or more slave channels, up to three types of PWM signals that have a specific period and a specified duty factor can be generated.

5.13.3 8-bit Timer Operation Function

The 8-bit timer operation function makes it possible to use a 16-bit timer channel in a configuration consisting of two 8-bit timer channels. This function can only be used for channels 1 and 3.

5.14 15-bit Interval Timer

An interrupt (INTIT) is generated at any previously specified time interval. It can be utilized for wakeup from DEEPSLEEP mode.

5.15 Clock Output/Buzzer Output Controller

The clock output controller is intended for clock output for supply to peripheral ICs. Buzzer output is a function to output a square wave of buzzer frequency.

5.16 Serial communication Interface (SCI)

This product has two serial array units. Serial array unit has four serial channels. All channels can achieve UART, simplified SPI (3-wire serial) and simplified I2C.Function assignment of each channel is

as shown below.

5. 16. 1 **3-wire Serial I/O (SSPI)**

Data is transmitted or received in synchronization with the serial clock (SCK) output from the master channel.3-wire serial communication is clocked communication performed by using three communication lines: one for the serial clock (SCK), one for transmitting serial data (SO), one for receiving serial data (SI).

[Data transmission/reception]

- Data length of 7 or 8 bits
- > Phase control of transmit/receive data
- MSB/LSB first selectable

[Clock control]

- Master/slave selection
- Phase control of I/O clock
- > Setting of transfer period by prescaler and internal counter of each channel
- > Maximum transfer rate

During master communication: Max. fCLK/2

During slave communication: Max. fMCK/6

[Interrupt function]

- > Transfer end interrupt/buffer empty interrupt
- [Error detection flag]
 - > Overrun error

5.16.2 4-wire Serial I/O with Slave Select Input Function

This is a clock synchronization using a slave chip select input (SSI), a serial clock (SCK), a transmit serial data (SO) and a receive serial data (SI) a total of 4 communication lines for communication Communication Interface.

[Data transmission/reception]

- Data length of 7 or 8 bits
- > Phase control of transmit/receive data
- MSB/LSB first selectable
- Level setting of transmit/receive data

[Clock control]

- Phase control of I/O clock
- > Setting of transfer period by prescaler and internal counter of each channel
- Maximum transfer rate
 - During slave communication: Max. fMCK/6

[Interrupt function]

Transfer end interrupt/buffer empty interrupt

[Error detection flag]

> Overrun error

5. 16. 3 **UART**

This is a start-stop synchronization function using two lines: serial data transmission (TxD) and serial data reception(RxD) lines. By using these two communication lines, each data frame, which consist of start bit, data, parity bit and stop bit, is transferred asynchronously (using the internal baud rate) between the microcontroller and the other communication party. Full-duplex UART communication can be performed by using a channel dedicated to transmission (even-numbered channel) and a channel dedicated to reception (odd-numbered channel). The LIN-bus can be implemented by using UARTO, Timer4 unit 0 (channel 3), and an external interrupt (INTP0).

[Data transmission/reception]

- Data length of 7, 8, or 9 bits
- Select the MSB/LSB first
- > Level setting of transmit/receive data (selecting whether to reverse the level)
- Parity bit appending and parity check functions
- > Stop bit appending, stop bit check function

[Interrupt function]

- > Transfer end interrupt/buffer empty interrupt
- > Error interrupt in case of framing error, parity error, or overrun error

[Error detection flag]

> Framing error, parity error, or overrun error

[LIN-bus functions]

- Wakeup signal detection
- Break field (BF) detection
- > Sync field measurement, baud rate calculation

5.17 Serial Interface IICA

Serial interface IICA has the following three modes.

- Operation stop mode:
 This mode is used when serial transfers are not performed. It can reduce power consumption.
- > I2C bus mode (multi-master application supported):

This mode is used for 8-bit data transfers with several devices via two lines: a serial clock (SCLAn) line and a serial data bus (SDAAn) line.

It complies with the I2C bus format and the master device can generate "start condition",

"address", "transfer direction specification", "data", and "stop condition" data to the slave device,

via the serial data bus. The slave device automatically detects these received status and data by

hardware. It can simplify the part of application program that controls the I2C bus. Since the SCLA and SDAA pins are used for open drain outputs, serial interface IICA requires pull-up resistors for the serial clock line and the serial data bus line.

> Wakeup mode:

The DEEPSLEEP mode can be released by generating an interrupt request signal (INTIICA) when an extension code from the master device or a local address has been received while in DEEPSLEEP mode.

5.18 A/D Converter (ADC)

The A/D converter is a converter that converts analog input signals into digital values, and is configured to control analog inputs, including up to 15 channels of A/D converter analog inputs (ANI0 to ANI14).

The A/D converter has the following function.

- > 12-bit resolution A/D conversion, Conversionrate 1.42Msps.
- > Trigger mode: Software trigger, Hardware trigger mode
- Channel selection: Sigle channel select mode and Scan mode
- > Conversion operation mode: One-shot conversion mode and Sequential conversion mode
- ➢ Operation voltage:2.0V≤VDD≤5.5V
- > Can detect the internal reference voltage (1.45V) and temperature sensor.

Trigger mode	Software trigger	Conversion is started by software.
	Hardware trigger no-wait	Conversion is started by detecting a hardware trigger.
	Hardware trigger wait	The power is turned on by detecting a hardware trigger while the system
	mode	is off and in the conversion standby state, and conversion is then started
		automatically after the stabilization wait time passes.
Channel selection	Select mode	A/D conversion is performed on the analog input of one selected
mode	Scan mode	A/D conversion is performed on the analog input of four channels in
		order. Four consecutive channels can be selected from ANI0 to ANI15
		as analog input channels.
Conversion	One-shot conversion mode	A/D conversion is performed on the selected channel once.
operation	Sequential conversion	A/D conversion is sequentially performed on the selected channels until
mode	mode	it is stopped by software.
Sampling time/	Sampling clock cycles /	The sampling time can be set by the register. The default value of the
Conversion time	Conversion clock cycles	sampling clock is 13.5 clk, and the conversion clock number Min is
		31.5 clk.

Various A/D conversion modes can be specified by using the mode combinations below.

5.19 Programmable Gain Amplifier (PGA)

This product has two programmable gain amplifiers (PGA0, PGA1), The programmable gain amplifier

is provided with the following functions.

- GAIN: X4, X8, X10, X12, X14, X16, X32
- The external pin(PGAGND) can be selected as the ground of the negative feedback resistance of the PGA (can be used as a differential mode)
- The output of PGA0 can be selected as the analog input for the A/D converter or the analog input of the positive terminal of comparator 0 (CMP0)
- > PGA1 output can be selected as analog input for A/D converter

5.20 Comparator (CMP)

The product has two comparator channels. The comparator has the following functions.

- > A pin selector switch is added to the analog input of CMP1.
- The external reference voltage input or internal reference voltage can be selected as the reference voltage.
- > The canceling width of the noise canceling digital filter can be selected.
- > An interrupt signal can be generated by detecting an active edge of the comparator output.
- An event link controller (EVENTC) event signal can be output by detecting an active edge of the comparator output.

5.21 Serial Wire Debug (SW-DP)

SW-DP interface allows connection to the microcontroller via serial line debugging tools.

5.22 Safety Functions

5.22.1 Flash Memory CRC Operation Function (High-speed CRC,

General-purpose CRC)

This detects data errors in the flash memory by performing CRC operations.

Two CRC functions are provided according to the different applications.

- High-speed CRC: The CPU can be stopped and a high-speed check executed on its entire code flash memory area during the initialization routine.
- General CRC: This can be used for checking various data in addition to the code flash memory area while the CPU is running.

5. 22. 2 RAM Parity Error Detection Function

This detects parity errors when the RAM is read as data.

5. 22. 3 SFR Guard Function

This prevents SFRs (Special Function Register) from being rewritten when the CPU freezes.

5.22.4 Invalid Memory Access Detection Function

This detects illegal accesses to invalid memory areas.

5. 22. 5 Frequency Detection Function

This uses the timer4 to perform a self-check of the CPU/peripheral hardware clock frequency.

5. 22. 6 A/D Test Function

This is used to perform a self-check of A/D converter by performing A/D conversion on the positive internal reference voltage, negative reference voltage, analog input channel (ANI), temperature sensor output, and internal reference voltage output.

5.22.7 Digital Output Signal Level Detection Function

When the I/O pins are output mode, the output level of the pin can be read.

6 Electrical Characteristics

6.1 Typical Application Peripheral Circuit

The connection reference of the MCU typical application peripheral circuit is as follows:

6.2 Absolute Maximum Voltage Ratings

(T_A= − 40~+105°C)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5~+6.5	V
Input voltage	VI	P00~P02, P10~P13, P20~P26, P30~P37, EXCLK, EXCLKS, RESETB	-0.3~VDD+0.3 note1	V
Output voltage	VO	P00~P02, P10~P13, P20~P26, P30~P37	-0.3~VDD+0.3 note1	V
Analog input voltage	VAI	ANI0~ANI14	-0.3~VDD+0.3 and -0.3~AVREF(+)+0.3 ^{note1, 2}	V

note:

1. Must be 6.5 V or lower.

2. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

Caution:

Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark:

- 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- 2. AVREF (+): + side reference voltage of the A/D converter.
- 3. Vss: Reference voltage

6.3 Absolute Maximum Current Ratings

(T_A= - 40∼+105°C)

Parameter	Symbols		Conditions	Ratings	Unit
		Per pin		-40	mA
Output current,	IOH1	Total of all pins	P10~P11, P20~P26, P30~P37	-170	mA
high	10110	Per pin		-0.5	mA
	IOH2	Total of all pins	P01~P02, P12~P13	-2	mA
	IOL1	Per pin	P10~P11, P20~P26, P30~P37	40	mA
Output current,		Total of all pins		170	mA
low	IOL2 -	Per pin	P01~P02, P12~P13	1	mA
		Total of all pins		5	mA
Operating ambient temperature	ТА		In normal operation mode		°C
Storage temperature	Tstg		emory programming mode	-65~+150	°C

Caution

Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark:

6.4 Oscillator Characteristics

6.4.1 X1, XT1 Characteristics

Resonator	Resonator	Conditions	MIN	TYP	MAX	Unit
X1 clock oscillation	Ceramic resonator/	2. 0V≪VDD≪5. 5V	1.0	_	20. 0	MHz
frequency (fx)	crystal resonator	2.00 <000 <3.50	1.0		20.0	WII 12
XT1 clock oscillation	Crystel reconstar	2. 0V≤VDD≤5. 5V	32	32, 768	25	1.11-
frequency (fxT)	Crystal resonator	Z. UV≪VDD≪5. 5V	32	32. 708	35	kHz

 $(TA = -40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, VSS = 0V)$

Note:

Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

6.4.2 On-chip Oscillator Characteristics

Oscillators	Conditions	MIN	TYP	MAX	Unit
High-speed on-chip oscillator clock frequency(fIH) Notes 1, 2		1. 0		64. 0	MHz
Llink anald on this assillator alask fraguency	TA= - 20∼+105°C	-1.0		+1.0	%
High-speed on-chip oscillator clock frequency	TA= - 40∼ - 20°C	-2.0		+2. 0	%
accuracy	TA 40 ⁷ - 20 C	Notes 3		Notes 3	70
Low encod on this coefficient clock from one will)		10	15	20	kHz
Low-speed on-chip oscillator clock frequency(fIL)		20	30	40	kHz

Note:

1. High-speed on-chip oscillator frequency is selected with the option byte and HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3. Guaranteed by design, not tested in production.

6.5 **DC Characteristics**

6.5.1 Pin Characteristics

$(TA=-40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, VSS=0V)$

Items	Symbol	Conditions			TYP	MAX	Unit
Output		Per pin for P10~P11, P20~P26, P30~	2.0V≤VDD≤5.5V 40~+85℃			-10.0 ^{note2}	m 4
	IOH1	P37	2.0V≤VDD≤5.5V 85~+105℃			-3.0 ^{note2}	mA
		Total of P10~P11, P20~P26, P30~P37 - (When duty \leq 70% Note 3) 2	2.0V≤VDD≤5.5V 40~+85℃			-135.0	
current, high			2.0V≤VDD≤5.5V 85~+105℃			-60.0	mA
	10110	Per pin for P01~P02, P12~P13	2.0V≤VDD≤5.5V			-0.1 ^{note2}	mA
	IOH2	Total of P01~P02, P12~P13 (When duty ≤ 70% ^{Note 3})	2.0V≤VDD≤5.5V			-1.5	mA

Note :

1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pins to an output pin.

2. Do not exceed the total current value.

3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) \approx -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

$(TA = -40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, VSS = 0V)$

Items	Symbol	Conditions			TYP	MAX	Unit
Output		DL1 Per pin for P10~P11, P20~P26, P30~P37 -40^{-} 2.0 85~ 2.0 Total of P10~P11, P20~P26, P30~P37 (When duty ≤ 70% ^{Note 3}) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0V≤VDD≤5.5V -40~+85°C			20.0 ^{note2}	
	101.4		2.0V≤VDD≤5.5V 85~+105°C			8.5 ^{note2}	mA
			2.0V≤VDD≤5.5V -40~+85°C			150.0	
Current, low			2.0V≤VDD≤5.5V 85~+105°C			80.0	mA
		Per pin for P01~P02, P12~P13	2.0V≤VDD≤5.5V			0.4 ^{note2}	mA
	IOL2	Total of P01~P02, P12~P13 (When duty ≤ 70% ^{Note 3})	2.0V≤VDD≤5.5V			5.0	mA

Note:

- 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pins.
- 2. Do not exceed the total current value.
- 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark: Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions	MIN	TYP	MAX	Unit	
Input	VIH1	P00~P02, P12~P13, P20~P26, P30~P37	Schmitt input	0.8VDD		VDD	V
voltage, high	VIH2	P10~P11	CMOS input	0.7VDD		VDD	V
Input	VIL1	P00~P02, P12~P13, P20~P26, P30~P37	Schmitt input	0		0.2VDD	V
voltage, low	VIL2	P10~P11	CMOS input	0		0.3VDD	V

 $(TA = -40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, VSS = 0V)$

Items	Symbol	Condition	MIN	TYP	MAX	Unit								
			4.0V≤VDD≤5.5V,				v							
			IOH1=-10.0mA Note 1	VDD-1.5			v							
			4.0V≤VDD≤5.5V,				v							
	VOH1		IOH1=-3.0mA	VDD-0.7			v							
Output voltage,	VUHI	P10~P11, P20~P26, P30~P37	2.4V≤VDD≤5.5V,	VDD-0.6			v							
high			IOH1=-3.0mA	VDD-0.6			v							
			2.0V≤VDD≤5.5V,	VDD-0.5			v							
			IOH1=-1.5mA	VDD-0.5			v							
	VOH2	H2 P01~P02, P12~P13	2.0V≤VDD≤5.5V,				v							
			IOH2=–100µA	VDD-0.5			V							
									4.0V≤VDD≤5.5V,	4.0V≤VDD≤5.5V,			4.0	
			IOL1=20.0mA Note 1			1.3	V							
			4.0V≤VDD≤5.5V,			0.7								
			IOL1=8.5mA			0.7	V							
	VOLA		2.4V≤VDD≤5.5V,				v							
Output voltage,	VOL1	P10~P11, P20~P26, P30~P37	IOL1=3.0mA			0.6	v							
low			2.4V≤VDD≤5.5V,			0.4	v							
			IOL1=1.5mA			0.4	V							
	ĺ		2.0V≤VDD≤5.5V,											
			IOL1=0.6mA			0.4	V							
			2.0V≤VDD≤5.5V,			0.4	V							
	VOL2	P01~P02, P12~P13	IOH2=-100µA			0.4	V							

(TA= - 40 \sim +105°C, 2.0V \leq EVDD=VDD \leq 5.5V, VSS=Evss=0V)

Note :

1. Operating ambient temperature is -40~+85°C.

Items	Symbol	Conditions		MIN	TYP	MAX	Unit
	ILIH1	P00, P10~P11, P20~P26, P30~ P37	VI=VDD			1	μA
Input leakage	ILIH2	RESETB	VI=VDD			1	μA
current, high	ILIH3	P01~P02 (X1, X2,	VI=VDD, In input port or external clock input			1	μA
	ILINJ	EXCLK, XT1, XT2, EXCLKS)	VI=VDD, In resonator connection			10	μA
	ILIL1	P00, P10~P11, P20~P26, P30~ P37	VI=VSS			-1	μA
Input leakage	ILIL2	RESETB	VI=VSS			-1	μA
current, low		P01~P02 (X1, X2,	VI=VSS, In input port or external clock input			-1	μA
	ILILO	,	VI=VSS, In resonator connection			-10	μA
On-chip pull-up resistance	RU	P00, P10~P11, P20~P26, P30~ P37	VI=VSS, In input port	10	30	100	kΩ
On-chip pull-down resistance	RD	P20~P26, P30~P37	VI=VDD, In input port	10	30	100	kΩ

$(TA = -40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, VSS = 0V)$

6.5.2 Supply Current Characteristics

Parameter	Symbol			Conditions			TYP.	MAX.	Unit
Supply	oly I _{DD1} Operation		ting High-speed on- f _{HOCO} =64MHz, f _{IH} =32MHz ^{note3}			2.2	6.1		
Current		mode	chip oscillator	fHOCO=48MHz, fIH=48	3MHz ^{note3}		1.9	5.4	mA
				fHOCO=8MHz, fIH=8M	Hz ^{note3}		0.6	1.4	
		Ì	high-speed	f _{MX} =20MHz ^{note2}	Square wave		0.9	2.8	mA
			main clock	MX-2010112	Resonator		0.9	2.8	ma
		high-speed SUB	note4	Square wave		65	80	uA	
			clock	fSUB=32.768kHz ^{note4} Resonator		65	80	UA	
	I _{DD2} Sleep mode	mode		fHOCO=64MHz, fIH=32MHz ^{note3}			1.7	3.6	
			fHOCO=48MHz, fIH=48MHz ^{note3}			1.4	2.8	mA	
				fHOCO ^{=8MHz,} f _{IH} =8M	Hz ^{note3}		0.5	0.8	
			high-speed main	f _{MX} =20MHz ^{note2}	Square wave		0.7	1.4	
			clock		Resonator		0.7	1.4	mA
		high-speed SUB	note5	Square wave		0.7	12.5		
			clock	f _{SUB} =32.768kHz ^{note5}	Resonator		0.7	12.5	uA
	I _{DD3}	Deep Sleep	T _A =-40°C~+70°C	VDD=3.0V			0.45	3.0	
	note6	note7					0.45	5.0	uA
			T _A =-40°C~+105°	C VDD=3.0V			0.45	12.5	ĺ

 $(T_{A}=-40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, VSS=0V)$

Note:1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values of the TYP. column include the current of the CPU executing the multiplication instruction (IDD1), not including the peripheral operation current. The values below the MAX. column include the current of the CPU executing the multiplication instruction (IDD1) and the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.

- 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- 3. When high-speed system clock and subsystem clock are stopped.
- 4. When high-speed on-chip oscillator and high-speed system clock are stopped.
- 5. When high-speed on-chip oscillator and high-speed system clock are stopped. The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- 7. Regarding the value for current to operate the subsystem clock in DeepSleep mode, refer to that in Sleep mode.

Remark :

- 1. fHOCO: High-speed on-chip oscillator clock frequency. fIH: High-speed on-chip oscillator systerm clock frequency.
- 2. fSUB: Subsystem clock frequency (XT1/XT2 clock oscillation frequency).
- 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency).
- 4. temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL ^{note1}				0.2		uA
RTC operating current	IRTC note1,2,3				0.04		uA
15-bit interval timer operating current	IIT note12,4				0.02		uA
Watchdog timer operating current	IWDT note1,2,5	flL=15kHz			0.22		uA
A/D operating current	IADC note1,6	ADC HSn	node@64MHz		2.2		mA
		ADC HSn	node@4MHz		1.3		mA
		ADC LCm	node @24MHz		1.1		mA
		ADC LCm	node @4MHz		0.8		mA
D/A operating current	IDAC note1,8	Per D/A co	onverter channel		1.4		mA
PGA operating current		Per PGA o	channel		480	700	uA
		Per	When the internal reference				
OND second is a second second	ICMP ^{note1,9}	CMP	voltage is not in use		60	100	uA
CMP operating current		channel	When the internal reference				
			voltage is in use		80	140	uA
LVD operating current	ILVD ^{note1,7}				0.08		uA

 $(T_{A} = -40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, VSS = 0V)$

Note:

- 1. Current flowing to VDD.
- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or Sleep mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 15-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 15-bit interval timer operates in operation mode or Sleep mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).
- 6. Current flowing only to the A/D converter. The supply current of the microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the Sleep mode.
- 7. Current flowing only to the LVD circuit. The supply current of the microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only to the D/A converter. The supply current of the microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the Sleep mode.
- 9. Current flowing only to the comparator circuit. The supply current of the microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.

Remark :

- 1. flL: Low-speed on-chip oscillator clock frequency
- 2. temperature condition of the TYP. value is TA = 25°C.

6.6 AC Characteristics

Items	Symbol	Conditions	3	MIN	TYP	MAX	Unit
Instruction cycle	ТСҮ	Main system clock (fMAIN)operation	2.0V≤VDD≤5.5V	0.015625		1	μs
(minimum instruction execution time)	TCY	Subsystem clock (fsub) operation	2.0V≤VDD≤5.5V	28.5	30.5	31.3	μs
External system clock	fEX	2.0V≤VDD≤5.5V		1.0		20.0	MHz
frequency	fEXS	2.0V≤VDD≤5.5V		32.0		35.0	kHz
External system clock	tEXH, tEXL	2.0V≤VDD≤5.5V		24			ns
input high-level width, low-level width	tEXHS, tEXLS	2.0V≤VDD≤5.5V		13.7			μs
TI00 \sim TI03, input high-level width, low- level width	tTIH, tTIL	2.0V≤VDD≤5.5V	1/fMCK+ 10			ns	
TO00 \sim TO03,		4.0V≤VDD≤5.5V				16	MHz
TO10 \sim T103,	fTO	2.4V≤VDD<4.0V				8	MHz
output frequency		2.0V≤VDD<2.4V				4	MHz
		4.0V≤VDD≤5.5V				16	MHz
CLKBUZ0, CLKBUZ1	fPCL	2.4V≤VDD<4.0V				8	MHz
output frequency		2.0V≤VDD<2.4V				4	MHz
Interrupt input high- level width, low-level width	tINTH, tINTL	INTP0 ~ INTP11	2.0V≤VDD≤5.5V	1			μs
RESETB low-level width	tRSL			10			μs

 $(T_{A}=-40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, Vss=0V)$

Remark: fMCK: timer4 operation clock frequency

6.7 Peripheral Functions Characteristics

6.7.1 Serial Communication Interface

(1) UART mode

• $(T_{A}=-40 \sim +85^{\circ}C, 2.0V \leq VDD \leq 5.5V, VSS=0V)$

Parameter Co		nditions	Sp	Unit	
		nations	MIN	MAX	Unit
				fмск/6	bps
Transfer rate	2.0V ≤ VDD ≤ 5.5V	Theoretical value of the maximum transfer rate		10.6	Mbps
		fMCK=fCLK			

• (TA=+85~+105°C, 2.0V≤VDD≤5.5V, Vss=0V)

Deremeter		n elitic no		l la it	
Parameter	Co	nditions	MIN	MAX	Unit
				fMCK/12	bps
Transfer	2.0V ≤ VDD ≤ 5.5V	Theoretical value of the			
rate		maximum transfer rate		5.3	Mbps
		fMCK=fCLK			

(2) 3-wire serial I/O(SSPI) (master mode, internal clock output)

 $(T_{A}=-40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, Vss=0V)$

Denementen	Cumula al	Conditions		-40 \sim +85°C		+85 \sim +105°C		1.1
Parameter	Symbol	Ca	Conduons		MAX	MIN	MAX	Unit
			4.0V ≤ VDD ≤ 5.5V	31.25		62.5		ns
SCLKp	tKCY1	tKCY1 ≥ 2/fCLK	2.7V ≤ VDD ≤ 5.5V	41.67		83.3		
cycle time	IKCYI		2.4V ≤ VDD ≤ 5.5V	65		125		ns
			2.0V ≤ VDD ≤ 5.5V	125		250		ns
SCLKp		4.0V ≤ VDD ≤ 5.5V		tKCY1/2-4		tKCY1/2-7		ns
	tKH1, tKL1	2.7V ≤ VDD ≤ 5.5V		tKCY1/2-5		tKCY1/2-10		ns
high-/low-level width		$2.4V \le VDD \le 5.5V$		tKCY1/2-10		tKCY1/2-20		ns
width		$2.0V \le VDD \le 5.5V$		tKCY1/2-19		tKCY1/2-38		ns
	tSIK1	4.0V ≤ VDD ≤ 5.5\	/	12		23		ns
SDIp		2.7V ≤ VDD ≤ 5.5V		17		33		ns
setup time		2.4V ≤ VDD ≤ 5.5\	/	20		38		ns
(to SCLKp↑)		2.0V ≤ VDD ≤ 5.5\	/	28		55		ns
SDIp hold time	tKSI1	2.0V ≤ VDD ≤ 5.5\	1	5		10		ns
(from CLKp↑)		2.00 - 000 - 0.00	<i>v</i>	5		10		115
SCLKp↓→SD	tKSO1	$2.0V \le VDD \le 5.5V$	2.0V ≤ VDD ≤ 5.5V		5		10	ns
Op Delay time	tKSU1	C = 20pF Note1			Э		10	113

Note 1. C is the load capacitance of the SCLKp and SDOp output lines.

Caution: Select the normal input buffer for the SDIp pin and the normal output mode for the SDOp pin and SCLKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(3) 3-wire serial 1/0 (SSPI) (slave mode, external clock input)

$(T_{A}=-40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, Vss=0V)$

Denemeter	Cumula al	Candili		-40 \sim +8	5° C	+85 \sim +105 $^{\circ}$ C		Unit	
Parameter	Symbol	Conditi	ons	MIN	MAX	MIN	MAX	Unit	
		4.0V ≤ VDD ≤ 5.5V	20MHz < fMCK	8/fMCK		16/fMCK		ns	
		4.0V S VDD S 5.5V	fMCK ≤20MHz	6/fMCK		12/fMCK		ns	
		2.7V ≤ VDD ≤ 5.5V	16MHz < fMCK	8/fMCK		16/fMCK		ns	
SCLKp	tKCY2	2.7 V S VDD S 5.5 V	fMCK ≤16MHz	6/fMCK		12/fMCK		ns	
cycle time	utor 2	2.4V ≤ VDD ≤ 5.5V		6/fMCK and		12/fMCK		ns	
		2.40 \$ 000 \$ 5.50		500		and 1000		ns	
		2.0V ≤ VDD ≤ 5.5V		6/fMCK and		12/fMCK		20	
	2.0V ≤ VDD ≤ 5.5V			750		and 1500		ns	
SCLKp	tKH2,	$4.0V \le VDD \le 5.5V$		tKCY1/2-7		tKCY1/2-14		ns	
high-/low-level	tKL2	2.7V ≤ VDD ≤ 5.5V		tKCY1/2-8		tKCY1/2-16		ns	
width	un LZ	2.0V ≤ VDD ≤ 5.5V		tKCY1/2-18		tKCY1/2-36		ns	
SDIp setup time	tSIK2	2.7V ≤ VDD ≤ 5.5V		1/fMCK+20		1/fMCK+40		ns	
(to SCLKp↑)	ISINZ	2.0V ≤ VDD ≤ 5.5V		1/fMCK+30		1/fMCK+60		ns	
SDIp hold time	tKSI2	2.0V ≤ VDD ≤ 5.5V		1/fMCK+31		1/fMCK+62		20	
(from SCLKp↑)	INGIZ	2.00 \$ 000 \$ 5.50						ns	
		2.7V ≤ VDD ≤ 5.5V			2/fMC		2/fMC	ns	
	SCLKpj \rightarrow SDOp tKSO2 C=30pF note1 2.4V \leq VDD \leq 5	C=30pF note1			K+44		K+66	115	
SCLKp↓→SDOp		2.4V ≤ VDD ≤ 5.5V			2/fMC		2/fMC	ns	
Delay time	0002	C=30pF note1			K+75		K+113	115	
	2.0V ≤ VDD ≤ 5	2.0V ≤ VDD ≤ 5.5V			2/fMC		2/fMC	ns	
		C=30pF note1			K+100		K+150	115	

Note 1. C is the load capacitance of the SCLKp and SDOp output lines.

Caution: Select the normal input buffer for the SDIp pin and the normal output mode for the SDOp pin and SCLKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(4) 4-wire serial 1/0 (SPI) (slave mode, external clock input)

 $(T_{A}=-40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, Vss=0V)$

Parameter Symbol		Conditions		–40 \sim +85 $^{\circ}$ C		+85 \sim +105 $^{\circ}$ C		Unit
Parameter	Symbol		Conditions	MIN	MAX	MIN	MAX	Unit
	DAPmr	DABmn=0	2.7V ≤ VDD ≤ 5.5V	120		240		ns
SSI00 setup time	tssik	DAPIIII-0	2.0V ≤ VDD ≤ 5.5V	200		400		ns
33100 setup time		DAPmn=1	2.7V ≤ VDD ≤ 5.5V	1/fMCK+120		1/fMCK+240		ns
			2.0V ≤ VDD ≤ 5.5V	1/fMCK+200		1/fMCK+400		ns
	DADara	DABmn=0	2.7V ≤ VDD ≤ 5.5V	1/fMCK+120		1/fMCK+240		ns
SSI00 hald time	ticol	DAPmn=0	2.0V ≤ VDD ≤ 5.5V	1/fMCK+200		1/fMCK+400		ns
SSIOU noid time	SSI00 hold time tKSSI DAPmn=1	2.7V ≤ VDD ≤ 5.5V	120		240		ns	
		DAFIIII-I	2.0V ≤ VDD ≤ 5.5V	200		400		ns

Caution : Select the normal input buffer for the SDIp pin and the normal output mode for the SDOp pin and SCLKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

6.7.2 Serial Interface IICA

(1) I²C standard mode

(TA=-40~+105°C, 2.0V≤VDD≤5.5V, Vss=0V)

Devenueter	Currente el	Conditions	SI	bec	1.1
Parameter	Symbol	Conditions	MIN	MAX	Unit
SCLA0 clock frequency	fSCL	Standard mode: fCLK≥1MHz		100	kHz
Setup time of restart condition	tsu:sta		4.7		μS
Hold time Note 1	thd:sta		4.0		μS
Hold time when SCLA0 = "L"	tLOW		4.7		μS
Hold time when SCLA0 = "H"	tніgн		4.0		μS
Data setup time (reception)	tsu:dat		250		ns
Data hold time (transmission)	thd:dat		0	3.45	μS
Setup time of stop condition	tsu:sto		4.0		μS
Bus-free time	t BUF		4.7		μS

Note :

1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark:

The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb=400pF, Rb=2.7k Q

(2) I^2C fast mode

 $(T_{A}=-40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, Vss=0V)$

Parameter	Symbol	Conditions	Sp	bec	Linit
Parameter	Symbol	Conditions	MIN	MAX	Unit
SCLA0 clock frequency	fSCL	Fast mode: fCLK≥3.5MHz		400	kHz
Setup time of restart condition	tSU:STA		0.6		μs
Hold time Note 1	tHD:STA		0.6		μs
Hold time when SCLA0 = "L"	tLOW		1.3		μs
Hold time when SCLA0 = "H"	tHIGH		0.6		μs
Data setup time (reception)	tSU:DAT		100		ns
Data hold time (transmission) Note 2	tHD:DAT		0	0.9	μs
Setup time of stop condition	tSU:STO		0.6		μs
Bus-free time	tBUF		1.3		μs

Note :

1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark :

The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb=320pF, Rb=1.1k Ω

(3) I^2C fast mode plus

(1A - 40 + 100 0, 2.00 < 000 < 0.00, 000 < 0.00)	(T _A = - 40∼+105°C,	2. 0V≤VDD≤5. 5V,	Vss=0V)
--	--------------------------------	------------------	---------

Parameter	Symbol	Conditions	Sp	bec	Unit
Parameter	Symbol	Conditions	MIN	MAX	Unit
SCLA0 clock frequency	fSCL	Fast mode plus: fCLK≥10MHz		1000	kHz
Setup time of restart condition	tSU:STA		0.26		μs
Hold time Note 1	tHD:STA		0.26		μs
Hold time when SCLA0 = "L"	tLOW		0.5		μs
Hold time when SCLA0 = "H"	tHIGH		0.26		μs
Data setup time (reception)	tSU:DAT		50		ns
Data hold time (transmission) Note 2	tHD:DAT		0	0.45	μs
Setup time of stop condition	tSU:STO		0.26		μs
Bus-free time	tBUF		0.5		μs

Note :

1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark:

The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus:Cb=120pF, Rb=1.1k Ω

Internal reference voltage Temperature sensor output voltage

6.8 Analog Characteristics

6.8.1 A/D Converter Characteristics

	Reference Voltage	Reference voltage(+)=AVREFP	Reference voltage(+)=V _{DD}
Input channel		Reference voltage(-)=AVREFM	Reference voltage(-)=V _{SS}
ANI0 ~ ANI14		Refer to 6.7.1(1)	Refer to (2)

Classification of A/D converter characteristics

(1) When reference voltage (+)=AVREFP/ANI0, reference voltage (-)=AVREFM/ANI1

(TA=-40~+105°C, 2.0V≤AVREFP≤VDD≤5.5V, VSS=0V, reference voltage(+)=AVREFP, reference voltage(–)=AVREFM=0V)

Parameter	Symb	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES				12		bit
Overall error note1	AINL	12-bit resolution	2.0V ≤AV _{REFP} ≤5.5V		3		LSB
Conversion time note3	^t CONV	12-bit resolution	2.0V≤VDD≤5.5V	45			Tmclk
		Target pin:ANI2 ~ ANI14					
		12-bit resolution Target pin:Internal reference	2.01=100				Tmclk
		voltage,and temperature sensor output voltage, PGAoutput					
		voltage					
Zero-scale error	E _{ZS}	12-bit resolution	2.0V ≤AV _{REFP} ≤5.5V		0		LSB
Full-scale error Note 1	E _{FS}	12-bit resolution	2.0V ≤AV _{REFP} ≤5.5V		0		LSB
Integral linearity error	ILE	12-bit resolution	2.0V ≤AV _{REFP} ≤5.5V			±1	LSB
Differential linearity error ^{Note 1}	DLE	12-bit resolution	2.0V ≤AV _{REFP} ≤5.5V			±1.5	LSB
Analog input voltage	V _{AIN}	ANI2 ~ ANI14		0		AV _{REFP}	V
		Internal reference voltage (2.0V≤VDD≤5.5V)			V _{BGR} ^{note2}		V
		Temperature sensor output volta (2.0V≤VDD≤5.5V)	age	V	TMPS25	e2	V

Note 1. Excludes quantization error (±1/2 LSB).

2. Refer to "6.8.2 Temperature sensor characteristics/internal reference voltage characteristic".

3. Tmclk is the operating clock cycle of AD, and the maximum operating frequency is 64MHz.

(2) When reference voltage (+)=VDD, reference voltage (-)=VSS

$(TA=-40 \sim +105^{\circ}C, 2.0V \leq EVDD= VDD \leq 5.5V, VSS=EVSS=0V, reference voltage (+)=VDD, reference voltage (-)=VSS)$

Parameter	Symb	Conditio	ons	MIN.	TYP.	MAX.	Unit
Resolution	RES				12		bit
Overall error note1	AINL	12-bit resolution	2.0V ≤AV _{REFP} ≤5.5V		6		LSB
Conversion time ^{note3}	^t CONV	12-bit resolution Target pin:ANI0 ~ ANI14	2.0V≤VDD≤5.5V	45			Tmclk
		12-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage, PGAoutput voltage	2.0V≤VDD≤5.5V	72			Tmclk
Zero-scale error Note 1	EZS	12-bit resolution	2.0V ≤AV _{REFP} ≤5.5V		0		LSB
Full-scale error Note 1	E _{FS}	12-bit resolution	2.0V ≤AV _{REFP} ≤5.5V		0		LSB
Integral linearity error	ILE	12-bit resolution	2.0V ≤AV _{REFP} ≤5.5V			±2	LSB
Differential linearity error ^{Note 1}	DLE	12-bit resolution	2.0V ≤AV _{REFP} ≤5.5V			±3	LSB
Analog input voltage	V _{AIN}	ANIO ~ ANI14		0		V _{DD}	V
		Internal reference voltage (2.0V≤VDD≤5.5V)			V _{BGR} ^{note2}		V
		Temperature sensor output volt (2.0V≤VDD≤5.5V)	emperature sensor output voltage 0V≤VDD≤5.5V)		TMPS25	e2	V

Note 1. Excludes quantization error (±1/2 LSB).

- 2. Refer to "6.8.2 Temperature sensor characteristics/internal reference voltage characteristic."
- 3. Tmclk is the operating clock cycle of AD, and the maximum operating frequency is 64MHz.

6.8.2 Temperature Sensor Characteristics/Internal Reference

Voltage Characteristic

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Temperature sensor	VTMPS25	TA=25℃		1.09		V
output voltage	V TIVIF 323			1.09		v
			1.32	1.45	1.58	V
Internal reference voltage	VBGR		Note1	1.45	Note1	•
Internal reference voltage	VDGR	TA=10∼60°C	1.38	1.45	1.5	V
		TA=–40∼10℃, TA=60∼105℃	1.32	1.45	1.58	V
Temperature coefficient	FVTMPS			-3.5		mV/°C
Operation stabilization	tAMP		5			110
wait time	U-NIVIE'		5			μs

 $(TA= -40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, VSS=0V)$

Note1: Guaranteed by design, not tested in production.

6.8.3 Comparator

 $(T_{A}=-40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, Vss=0V)$

Parameter	Symbol		Conditions	MIN	TYP	MAX	Unit	
Input offset voltage	VIOCMP				±10	±40	mV	
Input voltage range	lvcmp			0		VDD	V	
Internal reference	A) (CmRVM register value : 7FH ~ 80H (m = 0, 1)				±2	LSB	
voltage deviation	ΔV_{IREF}	Other than above					±1	LSB
Response Time	tCR,tCF	Input amplitude±100mV			70	150	ns	
Operation stabilization	tCMP	CMPn=0->1	VDD= 3.3 ~ 5.5V			1		
Time Note 1	ICMP	CMPN-0-21	VDD= 2.0 ~ 3.3V			3	μs	
Reference voltage stabilization wait time	tVR	CVRE=0->1 Note2				20	μs	
Operation current	I _{CMPDD}	Separately	r, it is defined as the operation cu	irrent of p	peripheral f	unctions.		

Note1: Time taken until the comparator satisfies the DC/AC characteristics after the comparator operation enable signal is switched (CMPnEN = $0 \rightarrow 1$).

Note2: Enable comparator output (CnOE bit = 1; n = 0 to 1) after enabling operation of the internal reference voltage generator (by setting the CVREm bit to 1; m = 0 to 1) and waiting for the operation stabilization time to elapse.

Unit mV V

V % % % % % % V/us

uS uS uS uS uS uS

6. 8. 4 **PGA**

	2.01 (1	DD < 5. 5V, V35-0V)				
Parameter	Symbol	Conditions		MIN	TYP	MAX
Input offset voltage	VIOPGA					±10
Input voltage range	VIPGA			0		0.9xVDD/
						Gain
Output voltage range	VIOHPGA			0.93xVDD		
	VIOLPGA					0.07xVDD
Gain error		x4				±1
		x8				±1
		x10				±1
		x12				±2
		x14				±2
		x16				±2
		x32				±3
Slew rate	SR _{RPGA}	Rising	$4.0 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.5		
		Vin= 0.1VDD/gain to 0.9VDD/gain.	(Other than x32)			
		10 to 90% of output	4.0 V ≤ VDD ≤ 5.5 V (x32)	3.0		
		voltage amplitude	2.0 V ≤ VDD ≤ 4.0V	0.5		
	SR _{FPGA}	Falling	4.0 V ≤ VDD ≤ 5.5 V	3.5		
		Vin= 0.1VDD/gain to 0.9VDD/gain.	(Other than x32)			
		90 to 10% of output	$4.0 \text{ V} \le \text{VDD} \le 5.5 \text{ V} (x32)$	3.0		
		voltage amplitude	2.0 V ≤ VDD ≤ 4.0V	0.5		
Reference voltage	t _{PGA}	x4				5
stabilization wait		x8				5
time Note 1		x10				5
		x12				10
		x14				10
		x16				10
		x32				10
Operation current	I _{PGADD}	Separately, it is defined a	as the operation current of per	ipheral functio	ns.	

 $(T_{A}=-40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, Vss=0V)$

Note1. Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).

6.8.5 POR Circuit Characteristics

(TA= - 40~+105°C, Vss=0V)

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Power on/down	VPOR	Voltage threshold on VDD rising		1.50	2.0	V
reset threshold	VPDR	Voltage threshold on VDD falling	1.37	1.45	1.53	V
Minimum pulse width ^{Note 1}	TPW		300			μs

Note1. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

6.8.6 LVD Circuit Characteristics

1, Reset Mode and Interrupt Mode

 $(T_{A}=-40 \sim +105^{\circ}C, V_{PDR} \leq V_{DD} \leq 5.5V, V_{SS}=0V)$

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Voltage		Rising edge		4.06		V
detection	VLVD0	Falling edge		3.98		V
threshold	VLVD1	Rising edge		3.75		V
	VLVDI	Falling edge		3.67		V
	VLVD2	Rising edge		3.13		V
	VLVD2	Falling edge		3.06		V
	VLVD3	Rising edge		3.02		V
	VLVD3	Falling edge		2.96		V
	VLVD4	Rising edge		2.92		V
	VLVD4	Falling edge		2.86		V
	VLVD5	Rising edge		2.81		V
	VLVD3	Falling edge		2.75		V
	VLVD6	Rising edge		2.71		V
	VLVDO	Falling edge		2.65		V
	VLVD7	Rising edge		2.61		V
	VLVD/	Falling edge		2.55		V
	VLVD8	Rising edge		2.50		V
	VLVDO	Falling edge		2.45		V
	VLVD9	Rising edge		2.09		V
	VLVD9	Falling edge		2.04		V
Minimum	tLW		300			μs
pulse width			000			40
Detection					300	μs
delay time						٣٣

2, Interrupt & Reset Mode

(1A - +0 + 100 0, 100 < 0.00, 000 < 0.00, 000 < 0.00)	(T _A = − 40~+105°C,	VPDR \leq VDD \leq 5.5V,	Vss=0V)
---	--------------------------------	------------------------------	---------

Parameter	Symbol		Conditio	ons	MIN	TYP	MAX	Unit
Voltage	V _{LVDA0}	VPOC	2, V _{POC1} , V _{POC0} =0, 0	, 0,falling reset voltage	1.60	1.63	1.66	V
detection	V _{LVDA1}		LVIS1, LVIS0=1, 0	Rising release reset	1.74	1.77	1.81	V
threshold				Falling interrupt voltage	1.70	1.73	1.77	V
	V _{LVDA2}		LVIS1, LVIS0=0, 1	Rising release reset	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	V _{LVDA3}		LVIS1, LVIS0=0, 0	Rising release reset	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDB0}	VPOC	2, V _{POC1} , V _{POC0} =0, 0	, 1,falling reset voltage	1.80	1.84	1.87	V
	V _{LVDB1}		LVIS1, LVIS0=1, 0	Rising release reset	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	V _{LVDB2}		LVIS1, LVIS0=0, 1	Rising release reset	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	V _{LVDB3}		LVIS1, LVIS0=0, 0	Rising release reset	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	VPOC	2, V _{POC1} , V _{POC0} =0, 1	, 0,falling reset voltage	2.40	2.45	2.50	V
	V _{LVDC1}		LVIS1, LVIS0=1, 0	Rising release reset	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	V _{LVDC2}		LVIS1, LVIS0=0, 1	Rising release reset	2.66	2.71	2.76	V
]		Falling interrupt voltage	2.60	2.65	2.70	V
	V _{LVDC3}		LVIS1, LVIS0=0, 0	Rising release reset	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	VPOC	2, V _{POC1} , V _{POC0} =0, 1	, 1,falling reset voltage	2.70	2.75	2.81	V
	V _{LVDD1}		LVIS1, LVIS0=1, 0	Rising release reset	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDD2}		LVIS1, LVIS0=0, 1	Rising release reset	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	V _{LVDD3}		LVIS1, LVIS0=0, 0	Rising release reset	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

6.8.7 Power Supply Voltage Rising Slope Characteristics

(TA= - 40~+105°C, Vss=0V)

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Power supply voltage rising slope	SVDD				54	V/ms

6.9 Memory Characteristics

6.9.1 Flash Memory

Symbol	Parameter	Conditions	MIN	MAX	Unit
Tprog	Word Program(32bit)	Ta=–40~+105℃	24	30	μs
Taraaa	Sector erase(512B)	Ta=–40∼+105℃	4	5	ms
Terase	Chip erase	Ta=–40∼+105℃	20	40	ms
N _{END}	Endurance	Ta=–40∼+105℃	100		kcycle
t _{RET}	Data retention	100 kcycle(2) at Ta = 105 $^\circ \!$	20		Years

(TA=-40~+105°C, 2.0V≤VDD≤5.5V, Vss=0V)

Note1: Data based on characterization results, not tested in production.

Note2: Cycling performed over the whole temperature range.

6.9.2 RAM Memory

 $(T_{A}=-40 \sim +105^{\circ}C, 2.0V \leq VDD \leq 5.5V, Vss=0V)$

Symbol	Parameter	Conditions	MIN	MAX	Unit
Vramhold	RAM Hold Voltage	Ta=–40~+105℃	0.8		V

6.10 Electrical Sensitivity Characteristics

6.10.1 Electrostatic Discharge (ESD)

Symbol	Parameter	Conditions	Class	Passed Value	Unit
	Electrostatic discharge voltage	TA = +25 $^{\circ}$ C, conforming to	3A	6000	V
VESD(HBM)	(human body model)	JESD22-A114	34	8000	v

Note: Data based on characterization results, not tested in production.

6. 10. 2 Static Latch-up (LU)

Symbol	Parameter	Conditions	Class
		TA = +25 $^{\circ}$ C conforming to	I
LU	Static latch-up class	JESD78E	levelA

Note: Data based on characterization results, not tested in production.

7 Package Drawings

20-pin Products 7.1

20TSSOP (6.5x4.4mm, 0.65mm pitch)

20QFN (3x3mm, 0.4mm pitch)

NOM MAX

0.80

0.05

0.25

1.75

0.30 0.25

0.75

0.02

0.20

0.20 0.25

3.00 3.10

1.651.75

0.40BS0

1.60BSC

1.60BSC

1.65

0.40 0.45

75*75

7.2 24-pin Products

24SSOP (8.65x3.9mm, 0.635mm pitch)

SYMBOL	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
А	_	_	1.75	
A1	0.10 0.15		0.25	
A2	1.30 1.40		1.50	
A3	0.60	0.65	0.70	
b	0.23	-	0.31	
bl	0.22	0.25	0.28	
с	0.20	_	0.24	
cl	0.19	0.20	0.21	
D	8.55	8.65	8.75	
Е	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
e	0.635BSC			
h	0.30		0.50	
L	0.50	-	0.80	
LI	1.05REF			
θ	0	_	8°	

24QFN (4x4mm, 0.5mm pitch)

SYMBOL	MILLIMETER			
STMBOL	MIN	NOM	MAX	
А	0.70	0.75	0.80	
A1	-	0.02	0.05	
b	0.18	0.25	0.30	
с	0.18	0.20	0.25	
D	3.90	4.00	4.10	
D2	2.40	2.50	2.60	
e	0. 50BSC			
Ne	2. 50BSC			
Nd	2. 50BSC			
Е	3.90	4.00	4.10	
E2	2.40	2.50	2.60	
L	0.35	0.40	0.45	
h	0.30	0.35	0.40	
L/F载体尺寸	110x110			

8 Revision History

Rev.	date	Description		
		Page/Chapter	Changes	
1.0	2020.07.15	_	First Version Issue	
1.5	2021.11.25	6.4.2	IDD1 operating mode MAX current modification (condition change)	
		6.5.2	Add notes on low temperature conditions	
		6.8.2		