

BAT32G139 datasheet

ARM® Cortex®-M0+ based, ultra low power consumption 32-bit microcontroller

Built-in 256K byte Flash, rich simulation function, timer and various communication interfaces

V1.3

Please be reminded about following CMS's policies on intellectual property

^{*} Cmsemicon Limited(denoted as 'our company' for later use) has already applied for relative patents and entitled legal rights. Any patents related to CMS's MCU or other producrts is not authorized to use. Any individual, organization or company which infringes our company's interlectual property rights will be forbidden and stopped by our company through any legal actions, and our company will claim the lost and required for compensation of any damage to the company.

^{*} The name of Cmsemicon Limited and logo are both trademarks of our company.

^{*} Our company preserve the rights to further elaborate on the improvements about products function, reliability and design in this manual. However, our company is not responsible for any usage about this manual. The applications and their purposes in this manual are just for clarification, our company does not guarantee that these applications are feasible without further improvements and changes, and our company does not recommend any usage of the products in areas where people's safety is endangered during accident. Our company's products are not authorized to be used for life-saving or life support devices and systems. Our company has the right to change or improve the product without any notification, for latest news, please visit our website: www.mcu.com.cn

Features

Ultra-low power consumption operating environment:

- Power supply voltage range: 1.8V to 5.5V
- ➤ Temperature range: -40°C to 105°C
- Low power consumption mode: sleep mode, deep sleep mode
- Operating power consumption: 120uA/MHz@64MHz
- Power consumption in deep sleep mode: 0.8uA
- Deep sleep mode +32.768K+RTC: 1.2uA

Core:

- ARM®32-bitCortex®-M0+ CPU
- ➤ Working frequency: 32KHz~64MHz

Memory:

- 256KB Flash memory, with program and data storage shared
- 2.5KB dedicated data Flash memory
- > 32KB SRAM memory with parity check

Power and reset management:

- > Built-in power-on reset (POR) circuit
- Built-in voltage detection (LVD) circuit (threshold voltage can be set)

Clock management:

- ➤ Built-in high-speed vibrator, accuracy (±1%). Can provide 1MHz~64MHz system clock and peripheral module operation clock
- ➤ Built-in 15KHz low-speed oscillator
- ➢ Built-in 1 PLL
- Support 1MHz~20MHz external crystal oscillator
- Support 32.768KHz external crystal oscillator, which can be used to calibrate internal highspeed oscillator

Multiplier/divider module:

- Multiplier: Support single cycle 32bit multiplication operation
- Divider: Support 32bit signed integer division operation, only 8 CPU clock cycles to complete an operation

Enhanced DMA controller:

- Interrupt trigger start
- Transmission mode is selectable (normal transmission mode, repeated transmission mode, block transmission mode and chain transmission mode)
- The transmission source/destination area is optional for the full address space range

Linkage controller:

- The event signals can be linked together to realize the linkage of peripheral functions.
- ▶ 15 types of event input, 10 types of event trigger.

Abundant analog peripheral:

- 12-bit precision ADC converter, conversion rate 1.42Msps, 21 external analog channels, internal optional PGA output as conversion channel, with temperature sensor, support single-channel conversion mode and multi-channel scan conversion mode Conversion range: 0 to positive reference voltage
- 8-bit precision D/A converter, 2-channel analog output, real-time output function, output voltage range 0~VDD
- Comparator (CMP), built-in two-channel comparator with hysteresis, optional input source, reference voltage can be external reference voltage or internal reference voltage
- Programmable gain amplifier (PGA), built-in twochannel PGA, can set 4/8/10/12/14/16/32 times gain, with external GND pin (can be used as differential mode)

Input/output port:

- ➤ Number of I/O port: 41~71
- Can switch between N-channel open drain, TTL input buffer and internal pull-up and pull-down
- > Built-in button interrupt detection function
- > Built-in clock output/buzzer output control circuit

Serial two-wire debugger (SWD)

Abundant timer:

- ➤ 16-bit timer: 17 channels (With PWM function and motor dedicated PWM function)
- 15-bit interval timer: 1
- Real-time clock (RTC): 1 (with perpetual calendar, alarm clock function, and supports a wide range of clock correction)
- Watchdog timer (WWDT): 1
- SysTick timer

Abundant and flexible interface:

- 4-channel serial communication unit: each channel can be freely configured as a 1-channel standard UART, 2-channel SPI or 2-channel simple I2C
- > Standard I2C: 2 channels
- CAN:2 channel

security function:

- Comply with relevant standards of IEC/UL 60730
- Abnormal storage space access error
- Support RAM parity check
- Support hardware CRC check
- Support important SFR protection to prevent misoperation
- > 128-bit unique ID number

Flash secondary protection in debug mode (level1: only the entire flash area can be erased, not read or write; level2: the emulator connection is invalid, and the flash operation is not possible)

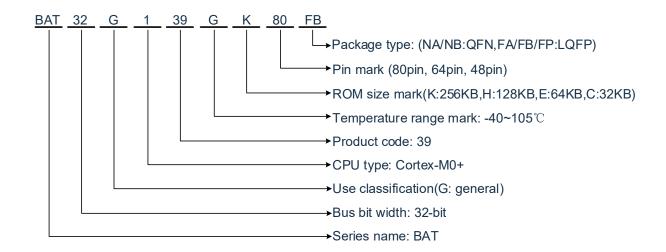
Encapsulation:

Support multiple encapsulations of 48Pin, 64Pin and 80Pin

1 Overview

1.1 Introduction

Ultra-low power consumption BAT32G139 uses high-performance 32-bit RISC core of ARM®Cortex®-M0+, can work at a frequency of up to 64 MHz, and adopts high-speed embedded flash memory (SRAM max. 32KB, program/data flash memory max. 256KB). This product integrates multiple standard interfaces of I2C, SPI, UART, LIN and CAN bus Integrated 12bit A/D converter, temperature sensor, 8bitD/A converter, comparator, programmable gain amplifier. Among them, the 12bit A/D converter can collect external sensor signals, reducing system design costs. 8bit D/A converter can be used for audio playback or power control. The temperature sensor integrated in the chip can realize real-time monitoring of the external ambient temperature. The internally integrated comparator of the chip can support both high-speed and low-speed operating modes. In the high-speed mode, it can support the control feedback of the high-speed motor, and in the low-speed mode, it can be used for battery monitoring. Integrate a variety of advanced timer modules, load 1-channel SysTick timer, 17-channel 16bit timer, 1-channel 15bit interval timer, watchdog timer and real-time clock and other functions, and can support general-purpose PWM and motor-specific PWM applications.


BAT32G139 also has excellent low-power performance, supports two low-power modes of sleep and deep sleep, and is designed to be flexible. Its operating power consumption is 120uA/MHz@64MHz, and the power consumption is only 0.8uA in deep sleep mode, which is suitable for battery-powered low-power devices. At the same time, due to the integrated event linkage controller, direct connection between hardware modules can be realized without the intervention of the CPU, which is faster than using interrupt response, while reducing the frequency of CPU activity and prolonging the battery life.

These characteristics make the BAT32G139 microcontroller series can be widely used in various application scenarios, such as automotive body control, motor drive control, household appliances and mobile devices and other high-performance low-power applications.

www.mcu.com.cn 4 / 73 Rev 1.3

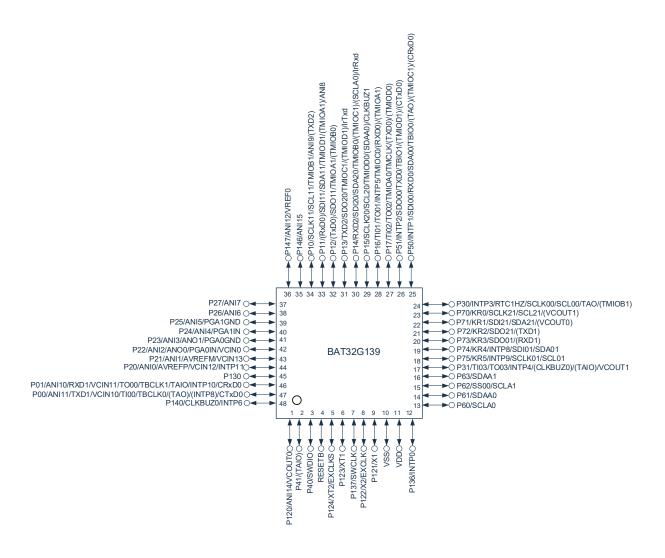
1.2 Product model list

List of products of BAT32G139:

Number of Pin	Encapsulation	Product model
48-pin	48-pin plastic package LQFP (7×7mm, 0.5mm pitch)	BAT32G139GK48FA
64-pin	64-pin plastic package LQFP (7×7mm, 0.4mm pitch)	BAT32G139GK64FB
80-pin	80-pin plastic package LQFP (12×12mm, 0.5mm pitch)	BAT32G139GK80FA

FLASH, SRAM capacity:

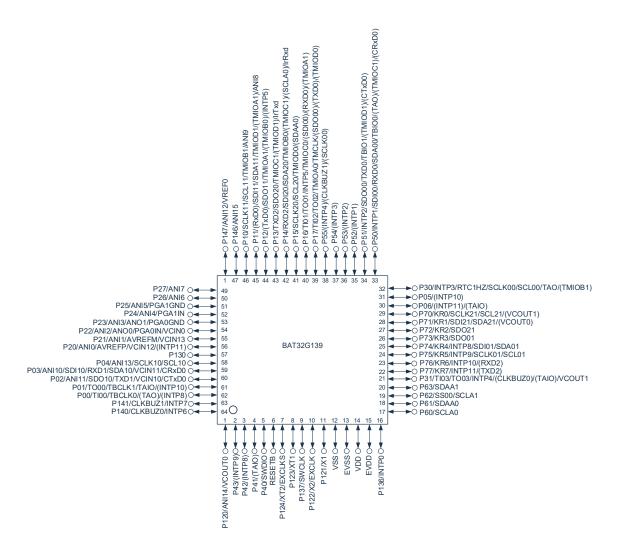
Flash	Special data BAT32G139				
memory	Flash memory	SRAM	48-pin	64-pin	80-pin
256KB	2.5KB	32KB	BAT32G139GK48	BAT32G139GK64	BAT32G139GK80


www.mcu.com.cn 5 / 73 Rev 1.3

1.3 Pin connection diagram (Top View)

1.3.1 48-pin product

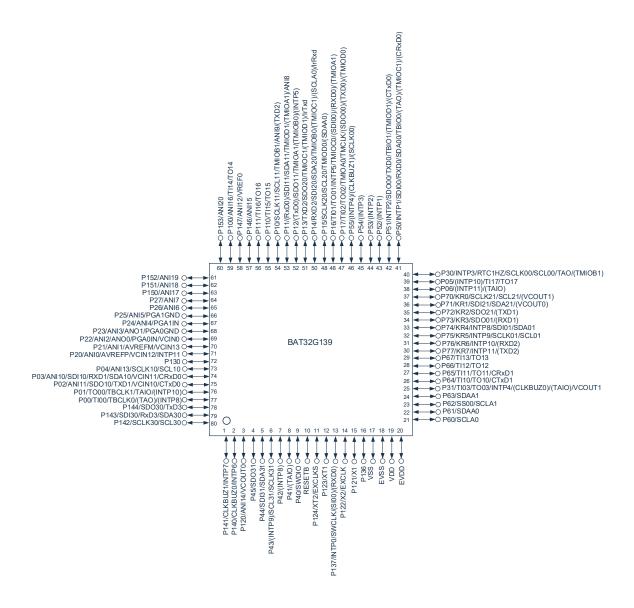
48-pin plastic package LQFP(7x7mm, 0.5mm pitch)



Note: The functions in the above figure () can be allocated by setting the peripheral I/O redirection register.

1.3.2 64-pin product

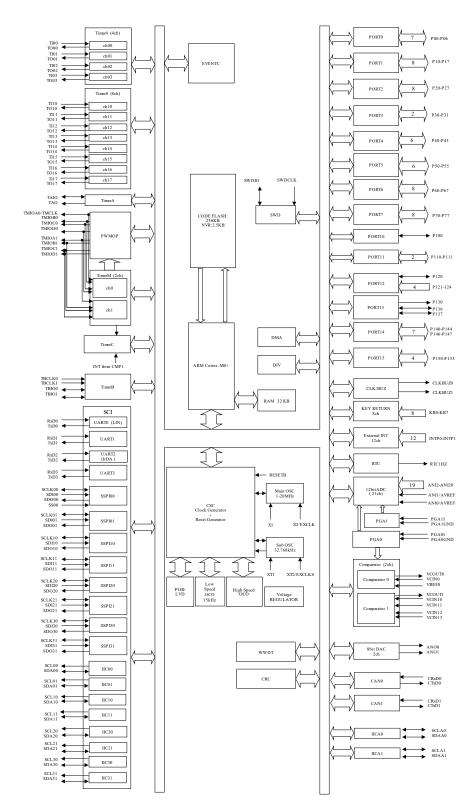
• 64-pin plastic package LQFP(7x7mm, 0.4mm pitch)


Note:

- 1) Make EVSS pin the same potential as VSS pin.
- 2) Make EVDD pin the same potential as VDD pin.
- When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD pins and connect the VSS and EVSS pins to separateground lines.
- 4) Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register.

1.3.3 80-pin product

80-pin plastic package LQFP(12x12mm, 0.5mm pitch)



Note:

- 1) Make EVSS pin the same potential as VSS pin.
- 2) Make EVDD pin the same potential as VDD pin.
- When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD pins and connect the VSS and EVSS pins to separateground lines.
- 4) Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register.

2 Block Diagram

Note: The above is for 80-pin product. Some functions of products below 80-pin are not supported.

3 Memory mapping

FFFF_FFFFH	Кеер
E00F_FFFFH	Cortex-M0+ dedicated peripheral area
Е000_0000Н	Кеер
4005_FFFFH	
	Peripheral area
4000_0000Н	Кеер
2000_7FFFH 2000_0000Н	SRAM (Max32KB)
	Keep
0050_0BFFH 0050_0200H	Data flash 2.5KB
	Keep
0003_FFFFH	Main flash area(Max 256KB)
0000_0000H	

www.mcu.com.cn 10 / 73 Rev 1.3

4 Pin function

4.1 Port function

The relationship between power supply and pins is as follows

80-pin, 64-pin product:

Power/ground	Corresponding pin
EVDD/EVSS	• Port pins other than P20~P27, P121~P124, P137 and RESETB
VDD/VSS	• P20~P27, P121~P124, P137 and RESETB

The 48-pin product uses a single power supply, and all pins are powered by VDD.

www.mcu.com.cn 11 / 73 Rev 1.3

4.1.1 48-pin products

(1/2)

Function Name	I/O	After Reset Release	Alternate Function	Function (1/2)
P00		Analog function	ANI11/TXD1/VCIN10/TI00/TBCLK0/(TAO) /(INTP8)/CTxD0	Port 0. 2-bit I/O port. Input/output can be specified in 1-bit units.
P01	1/0		ANI10/RXD1/VCIN11/TO00/TBCLK1 /TAIO/INTP10/CRxD0	Use of an on-chip pull-up resistor can be specified by a software setting at input port. Input of P01 can be set to TTL input buffer. Output of P00 can be set to N-ch open-drain output (VDD tolerance). P00 and P01 can be set to analog input
P10		Analog	SCLK11/SCL11/TMIOB1/ANI9/(TXD2)	
P11		Analog function	(RxD0)/SDI11/SDA11/TMIOD1/(TMIOA1)/ANI 8	Port 1.
P12			(TxD0)/SDO11/TMIOA1/(TMIOB0)	8-bit I/O port.
P13			TxD2/SDO20/TMIOC1/(TMIOD1)/IrTxd	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be
P14			RxD2/SDI20/SDA20/ TMIOB0/(TMIOC1)/ (SCLA0)/IrRxd	specified by a software setting at input port.
P15	1/0	Input port	SCLK20/SCL20/TMIOD0/(SDAA0)/CLK BUZ1	Input of P10 and P14 to P17 can be set to TTL input buffer. Output of P10, P11, P13 to P15, and P17 can
P16			TI01/TO01/INTP5/TMIOC0/(RXD0)/(TMIOA1)	be set to N-ch open-drain output (VDD tolerance).
P17			TI02/TO02/TMIOA0/TMCLK0/(TXD 0) /(TMIOD0)	P10 to P11 can be set to analog input.
P20			ANIO/AVREFP/VCIN12/(INTP11)	
P21			ANI1/AVREFM/VCIN13	
P22			ANI2/ANO0/PGA0IN/VCIN0	Port 2.
P23	1/0	Analog	ANI3/ANO1/PGA0GND	4-bit I/O port.
P24	170	function	ANI4/PGA1IN	Input/output can be specified in 1-bit units.
P25			ANI5/PGA1GND	Can be set to analog input.
P26			ANI6	
P27			ANI7	
P30		Input port	INTP3/RTC1HZ/SCLK00/SCL00/TAO /(TMIOB1)	Port 3. 2-bit I/O port. Input/output can be specified in 1-bit units.
P31	1/0		TI03/TO03/INTP4/(CLKBUZ0)/(TAIO) /VCOUT1	Use of an on-chip pull-up resistor can be specified by a software setting at input port. Input of P30 can be set to TTL input buffer.

				Output of P30 can be set to N-ch
				Open-drain output (VDD tolerance).
P40			SWDIO	Port 4
		Input port	port (TAIO)	2-bit I/O port.
D.4.4	1/0			Input/output can be specified in 1-bit units.
P41				Use of an on-chip pull-up resistor can be
				specified by a software setting at input port

(2/2)

	1	T		(2/2)
Function	I/O	After Reset	Alternate Function	Function
Name		Release		
חבת			INTP1/SDI00/RXD0/SDA00/TBIO0/(TAO)	Port 5.
P50			/(TMIOC1)/(CRxD0)	2-bit I/O port.
	-			Input/output can be specified in 1-bit units.
	1/0	Input port		Use of an on-chip pull-up resistor can be
	1,70	mpar port	INTP2/SDO00/TXD0/TBIO1/(TMIOD1)/(CTx	specified by a software setting at input port.
P51			D0)	Input of P50 can be set to TTL input buffer.
				Output of P50 and P51 can be set to N-ch
				opendrain output (VDD tolerance).
P60			SCLA0	Port 6
P61			SDAA0	2-bit I/O port.
P62	1/0	Input port	SS00	Input/output can be specified in 1-bit units.
Doo	-			Output of P60∼P63 can be set to N-ch
P63			_	opendrain output (6V tolerance).
P70			KR0/SCLK21/SCL21/(VCOUT1)	Port 7.
P71			KR1/SDI21/SDA21/(VCOUT0)	6-bit I/O port.
P72			KR2/SDO21/(TXD1)	Input/output can be specified.
P73	1/0	Input port	KR3/SDO01/(RXD1)	Use of an on-chip pull-up resistor can be
P74			KR4/INTP8/SDI01/SDA01	specified by a software setting at input port.
D75	-		KDE/INTDO/CCI KO4/CCI 04	Output of P71 and P74 can be set to N-ch
P75			KR5/INTP9/SCLK01/SCL01	opendrain output (VDD tolerance).
P120	1/0	Analog function	ANI14/VCOUT0	Port 12.
P121			X1	1-bit I/O port and 2-bit input-only port.
P122	-		X2/EXCLK	For only P120, input/output can be specified.
P123		Input port	XT1	For only P120, use of an on-chip pull-up
1.120		input port		resistor
P124			XT2/EXCLKS	can be specified by a software setting at input
				port. P120 can be set to analog input.
P130	0	Output port	_	Port 13.
P136			INTP0	1-bit I/O port and 2-bit input-only port.
	1/0	Input port		P136 and P137 can be designated as input or
P137	., 5		SWCLK	output in bit units. The input port can be set by
				software, using internal pull-up resistors.
P140	1/0	Input port	CLKBUZ0/INTP6	Port 14.

P146			ANI15	3-bit I/O port.
P147		Analog function	ANI12/VREF0	Input/output can be specified. Use of an on-chip pull-up resistor can be specified by a software setting at input port. P146 and P147 can be set as analog input.
RESET B	I	_	_	Input-only pin for external reset. Connect to V_{DD} directly or via a resistor when external reset is not used.

Note: Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units).

Description of Alternate function, please refer to "4.2 pins other than port pins".

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register.

www.mcu.com.cn 14 / 73 Rev 1.3

4.1.2 64-pin products

(1/2)

Function Name	I/O	After Reset Release	Alternate Function	Function	
P00		Input port	TI00/TBCLK0/(TAO)/(INTP8)	Port 0.	
P01		Input port	TO00/TBCLK1/TAIO/(INTP10)	7-bit I/O port.	
P02			ANI11/SDO10/TXD1/VCIN10/CTxD0	Input/output can be specified in 1-bit units.	
P03		Analog	ANI10/SDI10/RXD1/SDA10/VCIN11/CRxD0	Use of an on-chip pull-up resistor can be	
P04		function	ANI13/SCLK10/SCL10	specified by a software setting at input port.	
P05	I/ O		(INTP10)	Input of P01, P03 and P04 can be set to	
P06	Input port	Input port	(INTP11)/(TAIO)	TTL input buffer. Output of P00 can be set to N-ch opendrain output (VDD tolerance). P00 and P02 to P04 can be set to analog	
				input	
P10		Analog	SCLK11/SCL11/TMIOB1/ANI9	Port 1.	
P11		function	(RxD0)/SDI11/SDA11/TMIOD1/(TMIOA1)/ANI8	8-bit I/O port. Input/output can be specified in 1-bit units.	
P12		O Input port	(TxD0)/SDO11/TMIOA1/(TMIOB0)/(INTP5)	Use of an on-chip pull-up resistor can be	
P13			TXD2/SDO20/TMIOC1/(TMIOD1)/IrTxd	specified	
P14			0	RXD2/SDI20/SDA20/TMIOB0/(TMIOC1)/(SCLA 0)/IrRxd	by a software setting at input port. Input of P10 and P14 to P17 can be set to
P15	I/ O			SCLK20/SCL20/TMIOD0/ (SDAA0)	TTL
P16			TI01/TO01/INTP5/TMIOC0/(SDI00)/ (RXD0)	input buffer.	
P17			/(TMIOA1) TI02/TO02/TMIOA0/TMCLK0/(SDO00) /(TXD0)/(TMIOD0)	Output of P10, P11, P13 to P15, and P17 can be set to N-ch open-drain output (VDD tolerance). P10 to P11 can be set to analog input.	
P20			ANI0/AVREFP/VCIN12/(INTP11)		
P21			ANI1/AVREFM/VCIN13	7	
P22			ANI2/ANO0/PGA0IN/VCIN0	Port 2.	
P23	I/ O	Analog	ANI3/ANO1/PGA0GND	8-bit I/O port.	
P24		function	ANI4/PGA1IN	Input/output can be specified in 1-bit units.	
P25			ANI5/PGA1GND	Can be set to analog input.	
P26			ANI6	1	
P27			ANI7	1	
P30	I/ O	Input port	INTP3/RTC1HZ/SCLK00/SCL00/TAO /(TMIOB1)	Port 3. 2-bit I/O port.	

P31		TI03/TO03/INTP4/(CLKBUZ0)/(TAIO) /VCOUT1	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. Input of P30 can be set to TTL input buffer. Output of P30 can be set to N-ch Open-drain output (VDD tolerance).
-----	--	--	---

(2/2)

Function Name	I/O	After Reset Release	Alternate Function	Function (2/2)	
P40			SWDIO	Port 4.	
P41			(TAIO)	4-bit I/O port.	
P42	I/ O	Input port	(INTP8)	Input/output can be specified in 1-bit units.	
P43			(INTP9)	Use of an on-chip pull-up resistor can be specified by a software setting at input port.	
P50			INTP1/SDI00/RXD0/SDA00/TBIO0/(TAO) /(TMIOC1)/(CRxD0)	Port 5. 6-bit I/O port.	
P51			INTP2/SDO00/TXD0/TBIO1/(TMIOD1)/(CTxD0)	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be	
P52	I/ O	Input port	(INTP1)	specified by a software setting at input port.	
P53			(INTP2)	Input of P50 andP51 can be set to TTL input	
P54			(INTP3)	buffer. Output of P50, p51 and P55 can be set to N-	
P55			(INTP4)/(CLKBUZ1)/(SCLK00)	ch opendrain output (V _{DD} tolerance).	
P60			SCLA0	Port 6	
P61		Input port	SDAA0	4-bit I/O port.	
P62	I/ O		SS00	Input/output can be specified in 1-bit units.	
P63			_	Output of P60~P63 can be set to N-ch opendrain output (6V tolerance).	
P70				KR0/SCLK21/SCL21/(VCOUT1)	opendram output (ov tolerance).
P71			KR1/SDI21/SDA21/(VCOUT0)	Port 7.	
P72			KR2/SDO21	8-bit I/O port.	
P73			KR3/SDO01	Input/output can be specified in 1-bit units.	
P74	I/ O	Input port	KR4/INTP8/SDI01/SDA01	Use of an on-chip pull-up resistor can be specified by a software setting at input port.	
P75			KR5/INTP9/SCLK01/SCL01	Output of P71 and P74 can be set to N-ch	
P76			KR6/INTP10/(RxD2)	opendrain output (EV _{DD} tolerance).	
P77			KR7/INTP11/(TxD2)		
P120	I/O	Analog function	ANI14/VCOUT0	Port 12. 1-bit I/O port and 2-bit input-only port.	
P121		X1	For only P120, input/output can be specified. For only P120, use of an on-chip pull-up		
P122		lament or and	X2/EXCLK	resistor	
P123	I	Input port	XT1	can be specified by a software setting at input	
P124			XT2/EXCLKS	port. P120 can be set to analog input.	
P130	0	Output port	_	Port 13.	

P136			INTP0	1-bit I/O port and 2-bit input-only port.
				P136 and P137 can be designated as input
P137	I/O	Input port	CMCIK	or output in bit units. The input port can be
P137			SWCLK	set by software, using internal pull-up
				resistors.
P140		lance and	CLKBUZ0/INTP6	Port 14.
P141		Input port	CLKBUZ1/INTP7	4-bit I/O port. Input/output can be specified.
P146	I/O	Analog	ANI15	Use of an on-chip pull-up resistor can be
P147		function	ANI12/VREF0	specified by a software setting at input port. P146 and P147 can be set as analog input.
				Input-only pin for external reset.
RESETB	1	_	_	Connect to VDD directly or via a resistor
				when external reset is not used.。

Note: Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units).

Description of Alternate function, please refer to "4.2 pins other than port pins" .

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register.

4.1.3 80-pin products

(1/2)

Function Name	I/O	After Reset Release	Alternate Function	Function (1/2)		
P00			TI00/TBCLK0/(TAO)/(INTP8)	Port 0.		
P01		Input port	TO00/TBCLK1/TAIO/(INTP10)	7-bit I/O port.		
P02			ANI11/SDO10/TXD1/VCIN10/CTxD0	Input/output can be specified in 1-bit units.		
P03		Analog	ANI10/SDI10/RXD1/SDA10/VCIN11/CRxD0	Use of an on-chip pull-up resistor can be		
P04	I/ O	function	ANI13/SCLK10/SCL10	specified by a software setting at input port. Input of P01, P03 and P04 can be set to TTL		
P05			(INTP10)/TI17/TO17	input of Po1, Po3 and Po4 can be set to TTL input buffer.		
P06		Input port	(INTP11)/(TAIO)	Output of P00, P02 to P04 can be set to N-c open-drain output (EV _{DD} tolerance). P02, P03 and P04 can be set to analog input		
P10		Analas	SCLK11/SCL11/TMIOB1/ANI9			
P11		Analog function	(RxD0)/SDI11/SDA11/TMIOD1/(TMIOA1)/ANI 8	Port 1. 8-bit I/O port.		
P12			(TxD0)/SDO11/TMIOA1/(TMIOB0)/(INTP5)	Input/output can be specified in 1-bit units.		
P13		Input port	TXD2/SDO20/TMIOC1/(TMIOD1)/IrTxd	Use of an on-chip pull-up resistor can be		
P14	I/ O		RXD2/SDI20/SDA20/TMIOB0/(TMIOC1)/(S CLA0)/IrRxd	specified by a software setting at input port. Input of P10 and P14 to P17 can be set to TT input buffer. Output of P10, P11, P13 to P15, and P17 can be set to N-ch open-drain output (EV _{DD} tolerance).		
P15			SCLK20/SCL20/TMIOD0/ (SDAA0)			
P16	inipat pe		TI01/TO01/INTP5/TMIOC0/(SDI00)/ (RXD0) /(TMIOA1)			
P17			TI02/TO02/TMIOA0/TMCLK0/(SDO00) /(TXD0)/(TMIOD0)	P10 and P11 can be set to analog input.		
P20			ANIO/AVREFP/VCIN12/(INTP11)			
P21			ANI1/AVREFM/VCIN13			
P22			ANI2/ANO0/PGA0IN/VCIN0	Port 2.		
P23	W O	Analog	ANI3/ANO1/PGA0GND	8-bit I/O port.		
P24	I/ O	function	ANI4/PGA1IN	Input/output can be specified in 1-bit units.		
P25			ANI5/PGA1GND	Can be set to analog input.		
P26			ANI6			
P27			ANI7			
P30		O Input port	INTP3/RTC1HZ/SCLK00/SCL00/TAO /(TMIOB1)	Port 3. 2-bit I/O port.		
	I/ O			Input/output can be specified in 1-bit units.		
P31			TI03/TO03/INTP4/(CLKBUZ0)/(TAIO) /VCOUT1	Use of an on-chip pull-up resistor can be specified by a software setting at input port. Input of P30 can be set to TTL input buffer.		

www.mcu.com.cn 18 / 73 Rev 1.3

		Output of P30 can be set to N-ch Open-drain
		output (EV _{DD} tolerance).

(2/2)

Function Name	I/O	After Reset Release	Alternate Function	Function (2/2)
P40			SWDIO	Port 4
P41			(TAIO)	6-bit I/O port.
P42		Input port	(INTP8)	Input/output can be specified in 1-bit units.
P43	-		(INTP9)/SCLK31/SCL31	Use of an on-chip pull-up resistor can be
P44	I/O		SDA31/SDI31	specified by a software setting at input port.
	-			Input of P43 and P44 can be set to TTL input
P45			SDO31	buffer. Output of P43 and P44 can be set to N-ch
				Open-drain output (EV _{DD} tolerance).
			INTP1/SDI00/RXD0/SDA00/TBIO0/(TAO)	Port 5
P50			/(TMIOC1)/(CRxD0)	6-bit I/O port.
	-		INTP2/SDO00/TXD0/TBIO1/(TMIOD1)/(CT	Input/output can be specified in 1-bit units.
P51			, , , , ,	Use of an on-chip pull-up resistor can be
	I/O	Input port	xD0)	specified by a software setting at input port.
P52	-		(INTP1)	Input of P50 and P55 can be set to TTL input
P53			(INTP2)	buffer.
P54	-		(INTP3)	Output of P50, P51 and P55 can be set to N-
P55			(INTP4)/(CLKBUZ1)/(SCLK00)	ch Open-drain output (EV _{DD} tolerance).
P60	-		SCLA0	_
P61	-	Input port	SDAA0	Port 6
P62	-		SS00/SCLA1	8-bit I/O port.
P63	I/ O		SDAA1	Input/output can be specified in 1-bit units.
P64	., 0		TI10/TO10/CTxD1	Output of P60 to P63 can be set to N-ch Open-
P65			TI11/TO11/CRxD1	drain output (6V tolerance).
P66			TI12/TO12	
P67			TI13/TO13	
P70		Input port	KR0/SCLK21/SCL21/(VCOUT1)	
P71	- I/ O		KR1/SDI21/SDA21/(VCOUT0)	Port 7.
P72			KR2/SDO21	8-bit I/O port.
P73			KR3/SD001	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be
P74			KR4/INTP8/SDI01/SDA01	specified by a software setting at input port.
P75			KR5/INTP9/SCLK01/SCL01	Output of P71 and P74 can be set to N-ch
P76			KR6/INTP10/(RxD2)	open-drain output (EV _{DD} tolerance).
P77			KR7/INTP11/(TxD2)	,
P100	I/ O	Analog function	ANI16/TI14/TO14	Port 10. 1-bit I/O port. Input/output can be specified in 1-bit units.

				Use of an on-chip pull-up resistor can be		
				specified by a software setting at input port.		
P110			TI15/TO15	Port 11.		
				2-bit I/O port.		
P111	I/ O	Input port	TI16/TO16	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.		
P120	I/ O	Analog function	ANI14/VCOUT0	Port 12. 1-bit I/O port and 2-bit input-only port.		
P121			X1	For only P120, input/output can be specified.		
P122],	Input port	X2/EXCLK	For only P120, use of an on-chip pull-up resistor can be specified by a software		
P123]	Input port	XT1	setting at input port. P120 can be set to		
P124			XT2/EXCLKS	analog input.		
P130	0	Output port	_	Port 13.		
P136			INTP0	1-bit I/O port and 2-bit input-only port.		
P137	I/ O	Input port	SWCLK	P136 and P137 can be designated as input or output in bit units. The input port can be set by software, using internal pull-up resistors.		
P140			CLKBUZ0/INTP6	Port 14.		
P141			CLKBUZ1/INTP7	7-bit I/O port.		
P142		Input port	Input port	Input port	SCLK30/SCL30	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be
P143	I/ O		SDI30/RxD3/SDA30	specified by a software setting at input port.		
P144			SDO30/TxD3	Input of P142 and P143 can be set to TTL input buffer.		
P146		Analog	ANI15	Output of P142, P143, and P144 can be set to		
P147		function	ANI12/VREF0	N-ch open-drain output (EV _{DD} tolerance). P146 and P147 can be set to analog input		
P150			ANI17	Port 15.		
P151	1 1/ ()	Analog	ANI18	4-bit I/O port. Input/output can be specified in 1-bit units.		
P152		function	ANI19	Use of an on-chip pull-up resistor can be		
P153			ANI20	specified by a software setting at input port. Can be set to analog input		
RESETB	1	_	_	Input-only pin for external reset. Connect to VDD directly or via a resistor when external reset is not used.		

Note Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units).

Description of Alternate function, please refer to "4.2 pins other than port pins" .

Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register

4.2 Port multiplexing function

(1/2)

1	(1/2)		
input/output	Function		
input	Analog input of A/D converter		
output	D/A converter output		
	External interrupt request input		
input	Designation of valid edges: rising edge, falling edge,		
	rising and falling double edges		
input	Analog voltage input of comparator 0		
input	Comparator1's analog voltage/reference voltage input		
прис	Comparator is analog voltage/reference voltage input		
input	Reference voltage input of comparator0		
output	Comparator output		
input	PGA input		
input	PGA reference input		
input	Key interrupt input		
output	Clock output / buzzer output		
output	Real-time clock correction clock (1Hz) output		
	Low-level active system reset input. When external reset is not used, it		
input	must be connected to V_{DD} directly or through a resistor.		
input	CAN serial data input		
output	CAN serial data output		
input	Serial interface UART0, UART1, UART2 serial data input		
output	Serial interface UART0, UART1, UART2 serial data output		
	Serial interface IIC00, IIC01, IIC10, IIC11, IIC20, IIC21, IIC30, IIC31 serial		
output	clock output		
input/ output	Serial interface IIC00, IIC01, IIC10, IIC11, IIC20, IIC21, IIC30, IIC31 serial		
	clock input/ output		
	Serial interface SSPI00, SSPI01, SSPI10, SSPI11, SSPI20, SSPI21,		
input/ output	SSPI30, SSPI31 serial clock input/ output		
	Serial interface SSPI00, SSPI01, SSPI10, SSPI11, SSPI20, SSPI21,		
input	SSPI30, SSPI31 serial clock input/ output		
	input output input output output input output input output input input input output input output input input output		

(2/2)

Function name	input/output	Function (2/2)	
SS00	input	Chip select input of serial interface SSPI00	
SD000, SD001, SD010,	iliput		
SDO11, SDO20, SDO21,	output	Serial data output of SSPI00, SSPI01, SSPI10, SSPI11, SSPI20, SSPI21, SSPI30, SSPI31	
SDO30, SDO31 SCLA0, SCLA1	input/ output	<u> </u>	
SDAA0, SDAA1	input/ output	Serial interface IICA0, IICA1 clock input/output Serial interface IICA0, IICA1 serial data input/output	
T100~T103	input	16-bit timer Timer4 external count clock/capture trigger input	
T000~T003	output	Timer output of 16-bit timer Timer4	
TI10~TI17	input	16-bit timer Timer8 external count clock/capture trigger input	
TO10~TO17	output	Timer output of 16-bit timer Timer8	
TAIO	input/ output	Timer TimerA input/output	
TAO	output	TimerTimerA output	
TMCLK	input	TimerTimerM external clock input	
TMIOA0, TMIOB0, TMIOC0, TMIOD0, TMIOA1, TMIOB1, TMIOC1, TMIOD1	input/ output	Timer TimerM input/output	
TBIO0, TBIO1	input/ output	Timer TimerB input/output	
TBCLK0, TBCLK1	input	Timer TimerB external clock input	
X1, X2	_	Connect the resonator for the main system clock.	
EXCLK	input	External clock input of main system clock	
XT1, XT2	_	Connect the resonator for the subsystem clock.	
EXCLKS	input	External clock input for subsystem clock	
VDD	_	<48-pin product>: Power supply for all pins <64, 80 pin product>: Power supply for P20~P27, P121~P124, P137 and RESETB pins	
EVDD	ı	Power supply for port pins (except P20~P27, P121~P124, P137 and RESETB)	
AVREFP	input	Positive (+) reference voltage input of A/D converter	
AVREFM	input	Negative (–) reference voltage input of A/D converter	
	_	<48-pin product>: Ground potential of all pins	
VSS		<64, 80 pin product>:	
		Ground potential of P20~P27, P121~P124, P137 and RESETB pin	
EVSS	_	Ground potential of port pins (except P20~P27, P121~P124, P137 and	
L v 00		RESETB)	
SWDIO	input/ output	SWD data interface	
SWCLK	input	SWD clock interface	

Remark: As a countermeasure for noise and locking, the bypass capacitor (about 0.1uF) must be connected with the shortest distance between VDD-VSS and EVDD-EVSS and thicker wiring.

5 Function summary

5.1 ARM® Cortex®-M0+ core

ARM's Cortex-M0(+) processor is a new generation of ARM processors for embedded systems. It provides a low-cost platform designed to meet the needs of a small pin count and low-power microcontroller, while providing excellent computing performance and advanced system response to interrupts.

The 32-bit RISC processor of the Cortex-M0(+) processor provides excellent code efficiency and the expected high performance of the ARM core, which is different from 8-bit and 16-bit devices of the same memory size. The Cortex-M0(+) processor has 32 address lines and a storage space of up to 4G.

The Cortex-M0(+) processor equipped with this product integrates the MPU memory protection unit: provides hardware management and protection of memory, and controls access rights. In addition, it also integrates the MTB on-chip tracking unit: users can experience better tracking and debugging, optimized exception capture mechanism, and can locate bugs more quickly.

BAT32G139 uses an embedded ARM core, so it is compatible with all ARM tools and software.

5.2 Memory

5.2.1 Flash

BAT32G139 has a built-in flash memory that can be programmed, erased and rewritten. Has the following functions:

- Programs and data share 256K storage space.
- 2.5KB dedicated data Flash memory
- Support page erasing, each page size is 512byte, erasing time 4ms
- > Support byte/half-word/word (32bit) programming, programming time 24us

5.2.2 **SRAM**

BAT32G139 has built-in 32K bytes of embedded SRAM.

5.3 Enhanced DMA controller

Built-in enhanced DMA (Direct Memory Access) controller can realize the function of data transfer between memories without using CPU.

- It supports the start of DMA through peripheral function interrupts, and can realize real-time control through communication, timer and A/D.
- The transmission source/destination area is optional for the entire address space range (when the flash area is used as the destination address, the flash needs to be preset to the programming mode).
- > Supports 4 transfer modes (normal transfer mode, repetitive transfer mode, block transfer mode and chain transfer mode).

5.4 Linkage controller

The linkage controller links each peripheral function output event with the peripheral function trigger source. So as to realize the coordinated operation between peripheral functions without using the CPU.

The linkage controller has the following functions:

The linkage controller has the following functions:

- > The event signals can be linked together to realize the linkage of peripheral functions.
- > 23 types of event input, 10 types of event trigger.

5.5 Clock generation and start

The clock generation circuit is a circuit that generates a clock for the CPU and peripheral hardware. There are the following 3 types of system clocks and clock oscillation circuits.

5.5.1 Main system clock

- > X1 oscillator circuit: It can generate 1-20MHz clock oscillation by connecting a resonator to the pins (X1 and X2), and can stop the oscillation by executing a deep sleep command or setting MSTOP.
- High-speed internal oscillator (high-speed OCO): The frequency can be selected for oscillation by the option byte. After the reset is released, the CPU defaults to start running with this high-speed internal oscillator clock. Oscillation can be stopped by executing a deep sleep instruction or setting the HIOSTOP bit. The frequency set by the option byte can be changed through the frequency selection register of the high-speed internal oscillator. The highest frequency is 64Mhz, and the accuracy is ±1.0%.
- ➤ Input the external clock from the pin (X2): (1~20MHz), and the input of the external main system clock can be disabled by executing the deep sleep instruction or setting the MSTOP bit.

5.5.2 Subsystem clock

- > XT1 oscillator circuit: It can generate 32.768kHz clock oscillation by connecting a 32.768kHz resonator to the pins (XT1 and XT2), and the oscillation can be stopped by setting the XTSTOP bit.
- ➤ Input the external clock from the pin (XT2): 32.768kHz, and the input of the external clock can be disabled by setting the XTSTOP bit.

5.5.3 Low-speed internal oscillator clock

- Low-speed internal oscillator (low-speed OCO): generates 15kHz (TYP.) clock oscillation. The low-speed internal oscillator clock can be used as the CPU clock. The following peripheral hardware can be run by the low-speed internal oscillator clock:
- Watchdog timer (WWDT)
- ➤ Real Time Clock (RTC)
- > 15-bit interval timer
- TimerA

5.5.4 PLL

> PLL: can be used as system clock. The source clock of the PLL can be either an external clock or an internal high-speed oscillator clock.

www.mcu.com.cn 25 / 73 Rev 1.3

5.6 Power management

5.6.1 Power supply mode

VDD: external power supply, voltage range 1.8 to 5.5V

EVDD: external power supply, voltage range 1.8 to 5.5V

The voltage of the VDD pin must be equal to the voltage of the EVDD pin.

5.6.2 Power-on reset

The power-on reset circuit (POR) has the following functions:

- An internal reset signal is generated when the power is turned on. If the power supply voltage (VDD) is greater than the detection voltage (VPOR), the reset is released. However, before reaching the operating voltage range, the reset state must be maintained through a voltage detection circuit or an external reset.
- The power supply voltage (VDD) and the detection voltage (VPDR) are compared. When VDD<VPDR, an internal reset signal is generated. However, when the power supply drops, it must be shifted to the deep sleep mode before it falls below the operating voltage range, or set to the reset state through a voltage detection circuit or an external reset. If you want to restart operation, you must confirm that the power supply voltage has returned to the operating voltage range.

5.6.3 Voltage detection

The voltage detection circuit sets the operation mode and detection voltage (VLVDH, VLVDL, VLVD) through the option byte. The voltage detection (LVD) circuit has the following functions:

- Compare the power supply voltage (VDD) with the detection voltage (VLVDH, VLVDL, VLVD) and generate an internal reset or interrupt request signal.
- > The detection voltage of the power supply voltage (VLVDH, VLVDL, VLVD) can select the detection level by the option byte.
- Can run in deep sleep mode.
- When the power supply rises, before reaching the operating voltage range, the reset state must be maintained through a voltage detection circuit or an external reset. When the power supply drops, it must be transferred to the deep sleep mode before being lower than the operating voltage range, or set to the reset state through a voltage detection circuit or an external reset.
- The operating voltage range varies according to the setting of the user option byte.

5.7 Low power consumption mode

BAT32G139 supports two low-power modes to achieve the best compromise between low power consumption, short startup time, and available wake-up sources:

- Sleep mode: Enter the sleep mode by executing the sleep command. The sleep mode is a mode in which the CPU operating clock is stopped. Before setting the sleep mode, if the high-speed system clock oscillator circuit, high-speed internal oscillator, or subsystem clock oscillator circuit is oscillating, each clock continues to oscillate. Although this mode cannot reduce the operating current to the level of the deep sleep mode, it is an effective mode when you want to restart processing immediately through an interrupt request or when you want to perform intermittent operation frequently.
- Deep sleep mode: Enter the deep sleep mode by executing the deep sleep command. The deep sleep mode is a mode to stop the oscillation of the high-speed system clock oscillation circuit and the high-speed internal oscillator and stop the entire system. Can greatly reduce the operating current of the chip. Because the deep sleep mode can be cancelled by an interrupt request, intermittent operation is also possible. However, in the case of the X1 clock, because it is necessary to ensure the wait time for stable oscillation when releasing the deep sleep mode, if you must start processing immediately with an interrupt request, you must select the sleep mode.

In either mode, the registers, flags, and data memory all retain the contents before the standby mode, and also maintain the status of the output latch and output buffer of the input/output port.

5.8 Reset function

The following 7 methods to generate a reset signal:

- 1) Input external reset through RESETB pin.
- Generate an internal reset through the program runaway detection of the watchdog timer.
- The internal reset is generated by comparing the power supply voltage of the power-on reset (POR) circuit and the detection voltage.
- 4) The internal reset is generated by comparing the power supply voltage of the voltage detection circuit (LVD) and the detection voltage.
- 5) Internal reset due to RAM parity error.
- 6) Internal reset due to access to illegal memory.
- 7) Software reset

The internal reset is the same as the external reset. After the reset signal is generated, the program is executed from the addresses written in addresses 0000H and 0001H.

5.9 Interrupt function

The Cortex-M0+ processor has a built-in nested vectored interrupt controller (NVIC), which supports up to 32 interrupt request (IRQ) inputs and 1 non-maskable interrupt (NMI) input. In addition, the processor also supports multiple internal exceptions.

This product has processed 32 maskable interrupt requests (IRQ) and 1 non-maskable interrupt (NMI), and can support up to 96 maskable interrupt sources and one non-maskable interrupt source. The actual number of interrupt sources varies from product to product.

		48-pin	64-pin	80-pin
Maskable	external	11	12	12
interrupt	internal	33	33	44

5.10 Real time clock (RTC)

The real-time clock (RTC) has the following functions.

- Counter with year, month, week, day, hour, minute and second.
- Fixed period interrupt function (period: 0.5 second, 1 second, 1 minute, 1 hour, 1 day, 1 month)
- Alarm interrupt function (alarm clock: week, hour, minute)
- > 1Hz pin output function
- Support the division of the subsystem clock or the main system clock as the running clock of the RTC
- > The real-time clock interrupt signal (INTRTC) can be used as a wake-up from deep sleep mode
- Support a wide range of clock correction functions

Only when the sub-system clock (32.768kHz) or the divided frequency of the main system clock is selected as the running clock of the RTC, the year, month, week, day, hour, minute and second can be counted. When the low-speed internal oscillator clock (15kHz) is selected, only the fixed cycle interrupt function can be used.

5.11 Watchdog timer

1 channel WWDT, 17bit watchdog timer is set to count operation by option byte. The watchdog timer runs on the low-speed internal oscillator clock (15kHz). The watchdog timer is used to detect program runaway. When a program out of control is detected, an internal reset signal is generated.

The following conditions are judged to be out of control of the program:

- When the watchdog timer counter overflows
- When a 1-bit operation instruction is executed on the enable register (WDTE) of the watchdog timer
- When writing data other than "ACH" to the WDTE register
- When writing data to the WDTE register while the window is closed

5.12 SysTick timer

This timer is dedicated to the real-time operating system, but it can also be used as a standard down counter. Its characteristics are: when the 24-bit down counter self-filling capacity counter reaches 0, a maskable system interrupt is generated.

5.13 Timer timer4

This product has built-in timer unit timer4 which contains 4 16-bit timers. Each 16-bit timer is called a "channel", which can be used as an independent timer or combined with multiple channels for advanced timer functions.

For details of each function, please refer to the table below:

	Independent channel operation function		Multi-channel linkage operation function
•	Interval timer	•	One-shot pulse output
•	Square wave output	•	PWM output
•	External event counter	•	Multiple PWM output
•	Frequency divider		
•	Measurement of input pulse interval		
•	Measurement of the high/low level width of the		
	input signal		
•	Delay counter		

5.13.1 Independent channel operation function

The independent channel operation function is a function that can independently use any channel without being affected by the operation mode of other channels. The independent channel operation function can be used in the following modes:

- 1) Interval timer: Can be used as a reference timer that generates interrupts (INTTM) at regular intervals.
- 2) Square wave output: Whenever an INTTM interrupt is generated, a flip is triggered, and a square wave with a 50% duty cycle is output from the timer output pin (TO).
- 3) External event counter: Count the valid edge of the input signal of the timer input pin (TI), and if it reaches the specified number of times, it can be used as an event counter to generate an interrupt.
- 4) Frequency divider function (only limited to channel 0 of unit 0): divide the input clock of the timer input pin (TI00), and then output from the output pin (TO00).
- 5) Input pulse interval measurement: start counting at the valid edge of the input pulse signal of the timer input pin (TI) and capture the count value at the valid edge of the next pulse to measure the interval of the input pulse.
- 6) Measurement of the high/low level width of the input signal: start counting on one edge of the input signal of the timer input pin (TI) and capture the count value on the other edge to measure the high or low level of the input signal Width.

www.mcu.com.cn 29 / 73 Rev 1.3

7) Delay counter: start counting at the valid edge of the input signal of the timer input pin (TI) and generate an interrupt after any delay period has elapsed.

5.13.2 Multi-channel linkage operation function

Multi-channel linkage operation function can be realized by combining the master channel (the basic timer of the main control cycle) and the slave channel (the timer that follows the master control channel). Multi-channel linkage operation function can be used in the following modes:

- 1) One-shot pulse output: Use two channels in pairs to generate one-shot pulses that can set the output timing and pulse width arbitrarily.
- 2) PWM (Pulse Width Modulation) output: Use 2 channels in pairs to generate pulses with a period and duty cycle that can be set arbitrarily.
- 3) Multiple PWM (Pulse Width Modulation) output: It can generate up to 7 kinds of PWM signals with any duty cycle in a fixed cycle by expanding the PWM function and using 1 master channel and multiple slave channels.

5.13.3 8-bit timer operation function

The 8-bit timer operation function can use the 16-bit timer channel as a function of two 8-bit timer channels. (Only channel 1 and channel 3 can be used)

5.13.4 LIN-bus support function

The timer4 unit can be used to check whether the received signal in LIN-bus communication is suitable for the LIN-bus communication format.

- 1) Wake-up signal detection: Start counting on the falling edge of the input signal of the UART serial data input pin (RxD) and capture the count value on the rising edge to measure the low-level width. If the low-level width is greater than or equal to a certain fixed value, it is considered as a wake-up signal.
- 2) Interval field detection: After detecting the wake-up signal, start counting from the falling edge of the input signal of the UART serial data input pin (RxD) and capture the count value on the rising edge to measure the low-level width. If the width of the low level is greater than or equal to a certain fixed value, it is regarded as an interval field.
- 3) Synchronous field pulse width measurement: After detecting the interval field, measure the low-level width and high-level width of the input signal of the UART serial data input pin (RxD). Calculate the baud rate based on the bit interval of the sync field measured in this way.

www.mcu.com.cn 30 / 73 Rev 1.3

5.14 Timer timer8

The 80-pin product adds a built-in timer unit timer8 with 8 16-bit timers. Each 16-bit timer is called a "channel", which can be used as an independent timer or combined with multiple channels for advanced timer functions.

5.14.1 Independent channel operation function

The independent channel operation function is a function that can independently use any channel without being affected by the operation mode of other channels. The independent channel operation function can be used in the following modes:

- 1) Interval timer: Can be used as a reference timer that generates interrupts (INTTM) at regular intervals.
- 2) Square wave output: Whenever an INTTM interrupt is generated, a flip is triggered, and a square wave with a 50% duty cycle is output from the timer output pin (TO).
- 3) External event counter: Count the valid edge of the input signal of the timer input pin (TI), and if it reaches the specified number of times, it can be used as an event counter to generate an interrupt.
- 4) Input pulse interval measurement: start counting at the valid edge of the input pulse signal of the timer input pin (TI) and capture the count value at the valid edge of the next pulse to measure the interval of the input pulse.
- 5) Measurement of the high/low level width of the input signal: start counting on one edge of the input signal of the timer input pin (TI) and capture the count value on the other edge to measure the high or low level of the input signal Width.
- 6) Delay counter: start counting at the valid edge of the input signal of the timer input pin (TI) and generate an interrupt after any delay period has elapsed.

5.14.2 Multi-channel linkage operation function

Multi-channel linkage operation function can be realized by combining the master channel (the basic timer of the main control cycle) and the slave channel (the timer that follows the master control channel). Multi-channel linkage operation function can be used in the following modes:

- 1) One-shot pulse output: Use two channels in pairs to generate one-shot pulses that can set the output timing and pulse width arbitrarily.
- 2) PWM (Pulse Width Modulation) output: Use 2 channels in pairs to generate pulses with a period and duty cycle that can be set arbitrarily.
- 3) Multiple PWM (Pulse Width Modulation) output: It can generate up to 7 kinds of PWM signals with any duty cycle in a fixed cycle by expanding the PWM function and using 1 master channel and multiple slave channels.

www.mcu.com.cn 31 / 73 Rev 1.3

5.14.3 8-bit timer operation function

The 8-bit timer operation function makes it possible to use a 16-bit timer channel in a configuration consisting of two 8-bit timer channels. This function can only be used for channels 1 and 3.

5.15 TimerA

This product has a built-in 16bit timer timerA, which is composed of a reload register and a down counter. It can be used in the following working modes:

- Timer mode: count the counting source (the counting source can be a clock or an external event)
- > Pulse output mode: count the counting source and output pulse when overflow
- > Event counter mode: An external event is counted. Operation is possible in DEEPSLEEP mode.
- > Pulse width measurement mode: An external pulse width is measured.
- Pulse period measurement mode: An external pulse period is measured.

5.16 TimerM

The product contains 2 channels of 16-bit timer timerM optimized for motor control. It has the following 4 working modes:

- > Timer mode:
 - Input capture function (Transfer the counter value to a register with an external signal as the trigger)
 - Output compare function (Detect register value matches with a counter, and Pin output can be changed at detection)
 - PWM function (Output pulse of any width continuously)
- Reset synchronous PWM mode: Output three-phase waveforms (6) without sawtooth wave modulation and dead time
- Complementary PWM mode: Output three-phase waveforms (6) with triangular wave modulation and dead time
- > PWM3 mode: Output PWM waveforms (2) with a fixed period

5.17 TimerB

TimerB is a 16-bit timer, supports the following three modes:

- > Timer mode:
 - Input capture function: Count at the rising edge, falling edge, or both rising/falling edges
 - Output compare function: Low output/high output/toggle output
- > PWM mode: PWM output available with any duty cycle
- > Phase counting mode: Automatic measurement available for the counts of the two-phase encoder

5.18 TimerC

his product has a built-in 16bit timer timerC, which can be triggered by software, comparator or timer timerM to realize the input capture function.

5.19 15-bit interval timer

This product has a built-in 15-bit interval timer, which can generate interrupts (INTIT) at any time interval set in advance, and can be used to wake up from deep sleep mode.

5.20 Clock output/buzzer output control circuit

The clock output controller is used to provide the clock to the peripheral IC, and the buzzer output controller is used to output the square wave of the buzzer frequency. Clock output or buzzer output is realized by dedicated pins.

www.mcu.com.cn 33 / 73 Rev 1.3

5.21 Universal serial communication unit

This product has 4 built-in universal serial communication units, and each unit has up to 4 serial communication channels. It can realize the communication functions of standard SPI, simple SPI, UART and simple I2C. Take the 80pin product as an example, the function allocation of each channel is as follows.

5.21.1 3-wire serial interface (simple SPI)

Synchronize data transmission and reception with the serial clock (SCK) output from the master control device.

This is a clock synchronous communication interface that uses 1 serial clock (SCK), 1 sending serial data (SO), and 1 receiving serial data (SI) to communicate with a total of 3 communication lines.

[data transmission and reception]

- > 7-bit or 8-bit data length
- Phase control of sending and receiving data
- MSB/LSB priority choice

[clock control]

- Choice of master control or slave
- Phase control of input/output clock
- The transmission cycle generated by the prescaler and the internal counter of the channel
- Maximum transfer rate

Master communication: Max.fCLK/2 Slave communication: Max.fMCK/6

[Interrupt function]

Transmission end interrupt, buffer empty interrupt

[Error detection flag]

Overflow error

5.21.2 Simple SPI with slave chip select function

SPI serial communication interface supporting slave chip select input function. This is a clock synchronization that uses a slave chip select input (SSI), a serial clock (SCK), a sending serial data (SO), and a receiving serial data (SI) 4 communication lines for communication. Communication Interface.

[Data sending and receiving]

- 7-bit or 8-bit data length
- Phase control of sending and receiving data
- MSB/LSB priority choice
- Level setting of sending and receiving data

[clock control]

- Phase control of input/output clock
- > The transmission cycle generated by the prescaler and the internal counter of the channel
- Maximum transfer rate

Slave communication: Max.fMCK/6

[Interrupt function]

> Transmission end interrupt, buffer empty interrupt

[Error detection flag]

Overflow error

5.21.3 **UART**

The function of asynchronous communication through two lines of serial data transmission (TxD) and serial data reception (RxD). Use these two communication lines to send and receive data asynchronously (using the internal baud rate) with other communication parties according to the data frame (consisting of start bit, data, parity bit and stop bit). Full-duplex UART communication can be realized by using two channels dedicated for transmission (even-numbered channels) and dedicated for reception (odd-numbered channels), and LIN-bus can be supported by combining timer4 units and external interrupts (INTP0).

[Data sending and receiving]

- > 7-bit, 8-bit or 9-bit data length
- MSB/LSB priority choice
- Selection of level setting and reverse phase of sending and receiving data
- > Additional parity check bit, parity check function
- Additional stop bit, stop bit detection

[Interrupt function]

> Transmission end interrupt, buffer empty interrupt

Error interrupt caused by framing error, parity error or overflow error

[Error detection flag]

Frame error, parity error, overflow error

[LIN-bus function]

- Wake-up signal detection
- > BF detection
- Measurement of synchronization field, calculation of baud rate

5.21.4 Simple I2C

The function of clock synchronization communication with multiple devices through two lines of serial clock (SCL) and serial data (SDA). Because this simple I2C is designed for single communication with flash memory, A/D converters and other devices, it can only be used as a master device. The start condition and stop condition are the same as the operation control register, and must comply with the AC characteristics and be processed by software.

[Data sending and receiving]

- Main control sending, main control receiving (only limited to the main control function of single main control)
- ACK output function, ACK detection function
- 8-bit data length (when sending the address, use the upper 7 bits to specify the address, and use the lowest bit for R/W control)
- Generate start and stop conditions through software

[interrupt function]

End of transmission interrupt

[Error detection flag]

> ACK error, overflow error

[Functions not supported by simple I2C]]

- Slave sending, slave receiving
- Multi-master control function (arbitration failure detection function)
- Waiting for detection function

5.22 Standard serial interface IICA

The serial interface IICA has the following 3 modes:

- Operation stop mode: This is a mode used when serial transmission is not performed, which can reduce power consumption.
- ➤ I2C bus mode (supports multiple masters): This mode uses 2 lines of serial clock (SCLA) and serial data bus (SDAA) to transmit 8-bit data with multiple devices. In line with the I2C bus format, the master device can generate "start condition", "address", "indication of the transfer direction", "data" and "stop condition" for the slave device on the serial data bus. The slave device automatically detects the received status and data through hardware. This function can simplify the I2C bus control part of the application. Because the SCLA pin and SDAA pin of the serial interface IICA are used as open-drain output, the serial clock line and the serial data bus require a pull-up resistor.
- Wake-up mode: In the deep sleep mode, when the extension code or the local station address from the autonomous control device is received, the deep sleep mode can be released by generating an interrupt request signal (INTIICA). Set through the IICA control register.

5.23 Controller CAN

This product can support up to two general CAN bus interfaces.

www.mcu.com.cn 37 / 73 Rev 1.3

5.24 Analog-to-digital converter (ADC)

This product has a built-in 12-bit resolution analog-to-digital converter SARADC, which can convert analog input to digital value and supports up to 21 channels of ADC analog input (ANI0~ANI20). The ADC contains the following functions:

- > 12-bit resolution, conversion rate 1.42Msps.
- > Trigger mode: support software trigger, hardware trigger and hardware trigger in standby state
- > Channel selection: support two modes of single-channel selection and multi-channel scanning
- > Conversion mode: support single conversion and continuous conversion
- ➤ Working voltage: Support the working voltage range of 1.8V≤VDD≤5.5V
- It can detect the built-in reference voltage (1.45V) and temperature sensor.

ADC can set various A/D conversion modes through the following mode combinations.

	Software trigger	Start the conversion by software operation.
	Hardware trigger no wait mode	Start the conversion by detecting the hardware trigger.
Trigger mode		In the conversion standby state with the power off, the power is
	Hardware trigger wait mode	turned on by detecting the hardware trigger, and the conversion
		starts automatically after the A/D power stabilization wait time.
	Select mode	Select 1 channel of analog input for A/D conversion.
Channel selection		Perform A/D conversion on 4 channels of analog input in
mode	Scan mode	sequence. It is possible to select 4 consecutive channels from
		ANI0 to ANI15 as analog input.
	Single conversion mode	Perform 1 A/D conversion on the selected channel.
Conversion mode	Continuous conversion mode	Perform continuous A/D conversion on the selected channel until
	Continuous conversion mode	it is stopped by software.
Sampling	Number of sampling	The sampling time can be set by the register. The default value of
time/conversion	clocks/number of conversion	the sampling clock is 13.5 clk, and the Min value of the
time	clocks	conversion clock is 31.5 clk.

www.mcu.com.cn 38 / 73 Rev 1.3

5.25 Analog to digital conversion (DAC)

This product has a built-in 2-channel 8-bit resolution analog-to-digital converter DAC, which can convert digital input to analog signal. Has the following characteristics:

- ➢ 8-bit resolution D/A converter
- Support the output of two independent analog channels
- R-2R ladder method
- > Built-in real-time output function

5.26 Programmable gain amplifier (PGA)

This product has two built-in programmable gain amplifiers (PGA0 and PGA1), which have the following functions:

- GAIN: X4, X8, X10, X12, X14, X16, X32
- > The external pin (PGAGND) can be selected as the ground of the negative feedback resistance of the PGA (can be used as a differential mode)
- The output of PGA0 can be selected as analog input for A/D converter or analog input for positive terminal of comparator0 (CMP0).
- PGA1 output can be selected as analog input for A/D converter

5.27 Comparator (CMP)

This product has built-in two channels with hysteresis comparator CMP0 and CMP1, with the following functions:

- The external input and reference multi-channels of CMP1 are optional.
- > Can select external reference voltage input and internal reference voltage for reference voltage.
- The elimination width of the noise elimination digital filter can be selected.
- Can detect the valid edge of the comparator output and generate an interrupt signal.
- > It can detect the valid edge of the comparator output and output the event signal to the linkage controller.

5.28 Two-wire serial debug port (SW-DP)

ARM's SW-DP interface allows to connect to the microcontroller through a serial wire debugging tool.

5.29 Security function

5.29.1 Flash CRC calculation function (high-speed CRC, general-purpose CRC)

Detect the data error of flash memory through CRC operation.

According to different purposes and conditions of use, the following 2 CRCs can be used respectively.

- ➤ High-speed CRC: In the initialization program, it can stop the operation of the CPU and check the entire code flash area at high speed。
- General CRC: In CPU operation, it is not limited to the code flash area but can be used for multi-purpose checking.

5.29.2 RAM Parity error detection function

When reading RAM data, detect parity errors.

5.29.3 SFR protection function

Prevent the important SFR (Special Function Register) from being rewritten due to CPU runaway.

5.29.4 Illegal memory access detection function

Detect illegal access to illegal memory area (area without memory or area with restricted access).

5.29.5 Frequency detection function

Can use timer4 unit to self-check CPU or peripheral hardware clock frequency.

5.29.6 A/D test function

Perform A/D conversion on the A/D converter's positive (+) reference voltage, negative (-) reference voltage, analog input channel (ANI), temperature sensor output voltage, and internal reference voltage Self-test.

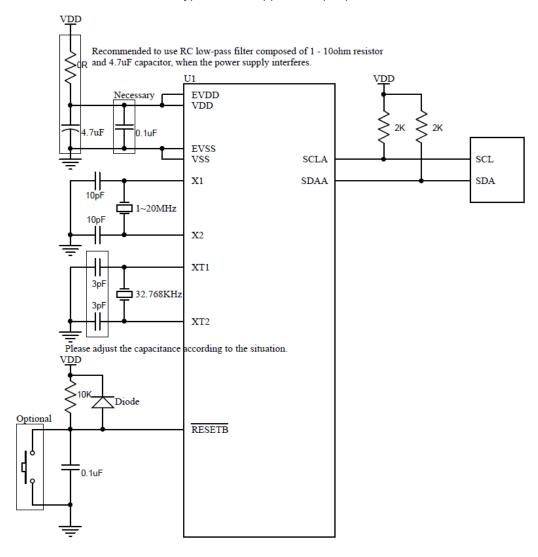
www.mcu.com.cn 40 / 73 Rev 1.3

5.29.7 Digital output signal level detection function of input/ output port

When the input/output port is in output mode, the output level of the pin can be read.

5.30 Key function

The input pin (KR0~KR7) can be interrupted by the key to generate a key interrupt (INTKR).


www.mcu.com.cn 41 / 73 Rev 1.3

6 Electrical characteristics

6.1 Typical application peripheral circuit

The device connection reference of the typical MCU application peripheral circuit is as follows:

6.2 Absolute maximum voltage rating

 $(TA=-40\sim+105^{\circ}C)$

Item	Symbol	Condition	Rating	Unit
Course valte se	VDD		- 0.5~+6.5	V
Source voltage	EVDD		- 0.5~+6.5	V
		P00~P06, P10~P17, P30, P31, P40~P45,		
Input voltage	\/14	P50~P55, P64~P67, P70~P77, P100, P110~	- 0.3∼EVDD+0.3 and	V
	VI1	P111, P120, P136, P140~P144, P146~P147,	- 0.3∼VDD+0.3 ^{note1}	V
		P150~P153		
	VI2	P60~P63(N-channel open drain)	- 0.3~+6.5	V
	VI3	P20~P27, P121~P124, P137, EXCLK,	o o o NEE o o note1	
		EXCLKS, RESETB	- 0.3~VDD+0.3 ^{note1}	V
		P00~P06, P10~P17, P30, P31, P40~P45,		
	V/O4	P50~P55, P60~P67, P70~P77, P100, P110~	- 0.3∼EVDD+0.3 and	
Output voltage	VO1	P111, P120, P136, P140~P144, P146~P147,	- 0.3∼VDD+0.3 ^{note1}	V
		P150~P153		
	VO2	P20~P27, P137	- 0.3~VDD+0.3 ^{note1}	V
	VAI1	ANI8~ANI20	- 0.3∼EVDD+0.3 and	V
Analog input valtage	VAII	ANIO~ANIZU	- 0.3~AVREF(+)+0.3 note1, 2	V
Analog input voltage	1//10	ANIO - ANI 7	- 0.3∼VDD+0.3 and	V
	VAI2	ANIO~ANI7	- 0.3~AVREF(+)+0.3 note1, 2	V

Note: 1. Do not exceed 6.5V.

2. The pin of the A/D conversion target cannot exceed AVREF(+)+0.3.

Note: Even if one of the items exceeds the absolute maximum rating for an instant, the quality of the product may be degraded. The absolute maximum rating is a rating that may cause physical damage to the product, and the product must be used under the condition that the rating is not exceeded.

Remarks:

- 1. Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.
- 2. AVREF(+): The positive (+) reference voltage of the A/D converter
- 3. Use VSS as the reference voltage.

www.mcu.com.cn 43 / 73 Rev 1.3

6.3 Absolute maximum current rating

 $(TA = -40 \sim +105^{\circ}C)$

Item	Symbol		Condition	Rating	Unit
		Each pin	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P64~P67, P70~P77, P100, P110~P111, P120, P130, P136, P137, P140~P144, P146~P147, P150~P153	- 40	mA
High level output current	IOH1	Total pins	P00~P04, P40~P45, P120, P130, P136, P137, P140~ P144, P150~P153	- 70	mA
output current		- 170mA	P05, P06, P10~P17, P30, P31, P50~P55, P64~P67, P70~P77, P100, P110~P111, P146, P147	- 100	mA
	IOH2	Each pin	P20~P27	- 3	mA
	IOHZ	Total pins	P20~P21	- 15	mA
		Each pin	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P60~P67, P70~P77, P100, P110~P111, P120, P130, P136, P137, P140~P144, P146~P147, P150~P153	40	mA
Low-level output current	IOL1	Total pins	P00~P04, P40~P45, P120, P130, P136, P137, P140~ P144, P150~P153	100	mA
output current		170mA	P05, P06, P10~P17, P30, P31, P50~P55, P60~P67, P70~P77, P100, P110~P111, P146, P147	120	mA
	101.2	Total pins	P20~P27	15	mA
	IOL2	Total pins	F2U ~F21	45	mA
Working temperature	ТА	Normally run When flash pr	Normally run When flash programming		
Storage temperature	Tstg			- 65~+150	°C

Note: Even if one of the items exceeds the absolute maximum rating for an instant, the quality of the product may be degraded. The absolute maximum rating is a rating that may cause physical damage to the product, and the product must be used under the condition that the rating is not exceeded.

Remark: Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.

www.mcu.com.cn 44 / 73 Rev 1.3

6.4 Oscillation circuit characteristics

6.4.1 X1, XT1 characteristics

(TA=-40~+105°C, 1.8V≤VDD≤5.5V, VSS=0V)

item	Resonator	condition	MIN	TYP	MAX	unit
X1 clock oscillation frequency (fx)	Ceramic resonator/ crystal resonator	1.8V≤VDD≤5.5V	1.0	-	20.0	MHz
XT1 clock oscillation frequency (fxt)	Crystal resonator	1.8V≤VDD≤5.5V	32	32.768	35	kHz

Note:

- 1. It only indicates the allowable frequency range of the oscillation circuit. Please refer to the AC characteristics for the command execution time.
- Please entrust the resonator manufacturer to evaluate after installing the circuit, and use it after confirming the oscillation characteristics.

6.4.2 Internal oscillator characteristics

(TA=-40~+105°C, 1.8V≤VDD≤5.5V, VSS=0V)

, , ,					
Resonator	Condition	MIN	TYP	MAX	unit
High-speed internal oscillator clock frequency (fIH) ^{note1,2}		1.0		64.0	MHz
	TA= - 20~+105°C	-1.0		+1.0	%
Clock frequency accuracy of high-speed internal oscillator	TA= - 40~ - 20°C	-1.5		+1.5	%
Clock frequency of low-speed internal oscillator (flL)		10	15	20	kHz

Note:

- 1. Select the frequency of the high-speed internal oscillator by the option byte.
- 2. It only shows the characteristics of the oscillation circuit, please refer to the AC characteristics for the command execution time.

6.4.3 PLL oscillator characteristics

(TA=-40~+105°C, 1.8V≤VDD≤5.5V, VSS=0V)

Resonator	Condition	MIN	TYP	MAX	unit
PLL input frequency note1		4.0		8.0	MHz
PLL lock time		40			μs

Note: 1. It only shows the characteristics of the oscillation circuit, please refer to the AC characteristics for the command execution time.

www.mcu.com.cn 45 / 73 Rev 1.3

6.5 DC characteristics

6.5.1 Pin characteristics

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, VSS=Evss=0V)

item	symbol	condition		MIN	TYP	MAX	unit
		P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P64~P67, P70~P77, P100,	1.8V≤EVDD≤5.5V -40~+85°C			-12.0 ^{note2}	
		P110~P111, P120, P130, P136, P137, P140~P144, P146~P147, P150~P153 1 pin alone	1.8V≪EVDD≪5.5V 85∼+105°C			-6.0 ^{note2}	mA
			4.0V≤EVDD≤5.5V -40~+85°C			-60.0	0
		P00~P04, P40~P45, P120, P130, P136, P137, P140~P144, P150~P153	4.0V≤EVDD≤5.5V 85~+105°C			-30.0	mA
		Total pins (when duty cycle ≤70% ^{note3})	2.4V≤EVDD<4.0V			-12.0	mA
High	IOH1		1.8V≤EVDD<2.4V			-6.0	mA
leveloutput Current note1		P05, P06, P10~P17, P30, P31, P50~P55,	4.0V≤EVDD≤5.5V -40~+85°C			-80.0	4
Current		P64~P67, P70~P77, P100, P110~P111, P146, P147	4.0V≤EVDD≤5.5V 85~+105°C			-30.0	mA
		Total pins (when duty cycle ≤70% ^{note3})	2.4V≤EVDD<4.0V			-20.0	mA
			1.8V≤EVDD<2.4V			-10.0	mA
			1.8V≤EVDD≤5.5V -40~+85°C		-140.0		
		Total pins (when duty cycle ≤70% ^{note3})	1.8V≤EVDD≤5.5V 85~+105°C			-60.0	mA
	10116	P20 ~ P27 1 pin alone	1.8V≤VDD≤5.5V			-2.5 ^{note2}	mA
	IOH2	Total pins (when duty cycle ≤70% ^{note3})	1.8V≤VDD≤5.5V			-10	mA

Note:

- 1. This is the current value that guarantees the operation of the device even if current flows from the EVDD, VDD pin to the output pin.
- 2. Can not exceed the total current value.
- 3. This is the output current value of "duty cycle≤70%condition".

To change the output current value with a duty cycle > 70% can be calculated with the following calculation formula (when the duty cycle is changed to n%).

• The total output current of the pins = $(IOH \times 0.7)/(n \times 0.01)$

<example> IOH =-10.0mA, n =80%

The total output current of the pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7 \text{mA}$

The current of each pin does not change due to the duty cycle, and no current above the absolute maximum rating will flow.

Note: In the N-channel open-drain mode, the pin set to the N-channel open-drain valid does not output a high

level.

Remark: Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, VSS=Evss=0V)

item	symbol	condition		MIN	TYP	MAX	unit
		P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P60~P67, P70~P77, P100,	1.8V≤EVDD≤5.5V -40~+85°C			35 ^{note2}	
		P110~P111, P120, P130, P136, P137, P140~P144, P146~P147, P150~P153 1 pin alone	1.8V≤EVDD≤5.5V 85~+105°C			20 ^{note2}	mA
		P00~P04, P40~P45, P120, P130, P136, P137, P140~P144, P150~P153 Total pins (when duty cycle ≤70% ^{note3})	4.0V≤EVDD≤5.5V -40~+85°C			100	^
			4.0V≤EVDD≤5.5V 85~+105°C			70	- mA
			2.4V≤EVDD<4.0V			30	mA
Low-level	IOL1		1.8V≤EVDD<2.4V			15	mA
output current ^{note 1}		P05, P06, P10~P17, P30, P31, P50~P55, P60~P67, P70~P77, P100, P110~P111, P146, P147 Total pins (when duty cycle ≤70% ^{note3})	4.0V≤EVDD≤5.5V -40~+85°C			120	
			4.0V≤EVDD≤5.5V 85~+105°C			80	- mA
			2.4V≤EVDD<4.0V			40	mA
			1.8V≤EVDD<2.4V			20	mA
		Total pins (when duty cycle ≤70% ^{note3})	1.8V≤EVDD≤5.5V -40~+85°C			150	
			1.8V≤EVDD≤5.5V 85~+105°C		100		- mA
	101.0	P20∼P271 pin alone	1.8V≤VDD≤5.5V			10 ^{note2}	mA
	IOL2	Total pins (when duty cycle ≤70% ^{note3})	1.8V≤VDD≤5.5V			40	mA

Note:

- 1. This is the current value that guarantees the operation of the device even if current flows from the output pin to the EVSS and VSS pins.
- 2. Can not exceed the total current value.
- 3. This is the output current value of "duty cycle≤70% condition".

The output current value with a duty cycle > 70% can be calculated with the following calculation formula (when the duty cycle is changed to n%)

• The total output current of the pins = $(IOL \times 0.7)/(n \times 0.01)$

<example> IOL= 10.0mA, n = 80%

The total output current of the pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{mA}$

The current of each pin does not change due to the duty cycle, and no current above the absolute maximum rating will flow.

Remark: Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.

www.mcu.com.cn 47 / 73 Rev 1.3

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, VSS=Evss=0V)

item	symbol	condition		MIN	TYP	MAX	unit
High level input voltage	VIH1	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P64~P67, P70~P77, P100, P110~P111, P120, P136, P140~P144, P146~P147, P150~P153	Schmidt input	0.8EVDD		EVDD	V
			TTL input 4.0V≪EVDD≪5.5V	2.2		EVDD	V
	VIH2	P01, P03, P04, P10, P14~P17, P30, P43~P44, P50, P55, P142~P143	TTL input 3.3V≤EVDD<4.0V	2.0		EVDD	>
		1 172 1 170	TTL input 1.8V≤EVDD<3.3V	1.5		EVDD	>
	VIH3	P20~P27, P137		0.7VDD		VDD	V
	VIH4	P60~P63		0.7EVDD		6.0	V
	VIH5	P121~P124, EXCLK, EXCLKS, F	0.8VDD		VDD	V	
	VIL1	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P64~P67, P70~P77, P100, P110~P111, P120, P136, P140~P144, P146~P147, P150~P153	Schmidt input	0		0.2EVDD	V
Low-level input		DO4 DO0 DO4 D40 D44 D47	TTL input 4.0V≤EVDD≤5.5V	0		0.8	V
voltage	VIL2	P01, P03, P04, P10, P14~P17, P30, P43~P44, P50, P55,	TTL input 3.3V≤EVDD<4.0V	0		0.5	٧
		P142~P143	TTL input 1.8V≤EVDD<3.3V	0		0.32	٧
	VIL3	P20~P27, P137		0		0.3VDD	V
	VIL4	P60~P63		0		0.3EVDD	V
	VIL5	P121~P124, EXCLK, EXCLKS, RESETB		0		0.2VDD	V

Note: Even in the N-channel open-drain mode, the maximum VIH (MAX.) of the pin that is set to the N-channel open-drain is also EVDD.

Note: Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.

(TA=-40 \sim +105°C, 1.8V \leq EVDD=VDD \leq 5.5V, VSS=Evss=0V)

item	symbol	condition	l	MIN	TYP	MAX	unit
			4.0V≤EVDD≤5.5V, IOH1= - 12.0mA	EVDD - 1.5			٧
	VO114	P00~P06, P10~P17, P30, P31, P40~P45, P50~P55, P64~P67, P70~P77, P100, P110~P111, P120, P130, P136, P137, P140~	4.0V≤EVDD≤5.5V, IOH1= - 6.0mA	EVDD - 0.7			٧
	VOH1		2.4V≤EVDD≤5.5V, IOH1= - 3.0mA	EVDD - 0.6			V
High level		P144, P146~P147, P150~P153	1.8V≤EVDD≤5.5V, IOH1= - 2mA	EVDD - 0.5			V
output voltage			4.0V≤VDD≤5.5V, IOH2= - 2.5mA	EVDD - 1.5			V
	VOH2	P20~P27	4.0V≤VDD≤5.5V, IOH2= - 1.5mA	EVDD - 0.7			V
	V 0112		2.4V≤VDD≤5.5V, IOH2= - 0.5mA	EVDD - 0.6			V
			1.8V≤VDD≤5.5V, IOH2= - 0.4mA	VDD - 0.5			V
		P40~P45, P50~P55, P60~P67, P70~P77, P100, P110~P111, P120, P130, P136, P137, P140~	4.0V≤EVDD≤5.5V, IOL1=35.0mA			1.2	V
	VOL1		4.0V≤EVDD≤5.5V, IOL1=20.0mA			0.7	٧
	VOLT		2.4V≤EVDD≤5.5V, IOL1=9.0mA			0.4	٧
Low-level		1144,1140 1147,1100 1100	1.8V≤EVDD≤5.5V, IOL1=6.0mA			0.4	٧
output voltage			4.0V≤VDD≤5.5V, IOL2=10.0mA			1.2	V
	VOL 2	P20a .P27	4.0V≤VDD≤5.5V, IOL2=6.0mA			0.7	٧
	VOL2	OL2 P20~P27	2.4V≤VDD≤5.5V, IOL2=2.5mA			0.4	V
			1.8V≤VDD≤5.5V, IOL2=2.0mA			0.4	V

Note: In the N-channel open-drain mode, the pin set to the N-channel open-drain valid does not output a high level.

Remarks: Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, VSS=Evss=0V)

item	symbol	cond	dition	MIN	TYP	MAX	unit
		P00~P06, P10~P17, P30,					
		P31, P40~P45, P50~P55,					
	ILIH1	P60~P67, P70~P77, P100,	VI=EVDD			1	μΑ
		P110~P111, P120, P130,					
High-level input leakage current		P136, P140~P144, P146~					
	ILIH2	P147, P150~P153	\/\ \/DD			4	A
	ILIH2	P20~P27, P137, RESETB	VI=VDD			1	μΑ
			VI=VDD, when input port			1	μA
	ILIH3	P121~P124 (X1, X2,	and external clock input				·
		EXCLK, XT1, XT2, EXCLKS)	VI=VDD, when the	10	μΑ		
			resonator is connected				
		P00~P06, P10~P17, P30,					
		P31, P40~P45, P50~P55,					
	ILIL1	P60~P67, P70~P77, P100,	VI=EVSS			-1	μΑ
		P110~P111, P120, P130,					ļ ·
Low lovel input		P136, P140~P144, P146~					
Low-level input		P147, P150~P153					
leakage current	ILIL2	P20~P27, P137, RESETB	VI=VSS			-1	μΑ
			VI=VSS, when input port			-1	
	11 11 2	P121~P124 (X1, X2, EXCLK,	and external clock input			-1	μΑ
	ILIL3	XT1, XT2, EXCLKS)	VI=VSS, when the			10	
			resonator is connected			-10	μΑ
		P00~P06, P10~P17, P30,					
		P31, P40~P45, P50~P55,					
Internal pull-up	DII	P64~P67, P70~P77, P100,	VI-EVSS when input nort	10	30	100	kΩ
resistor	RU	P110~P111, P120, P136,	VI=EVSS, when input port	10	30	100	K 12
		P137, P140~P144, P146~					
		P147					

Note: Unless otherwise specified, the characteristics of multiplexed pins are the same as those of port pins.

6.5.2 Power supply current characteristics

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS=0V)

item	symbol		Co	ondition		MIN.	TYP.	MAX.	unit
			I limb and all	fHOCO=64MHz, fIH	I=64MHz ^{note3}		7.6	12	
			High-speed internal oscillator	fHOCO=48MHz, fIH=48MHz note3			7.0	10	mA
			internal oscillator	fHOCO=32MHz, fIH	I=32MHz note3		6.0	7.8	
		0	High-speed main	fMV_20MH= note2	Input square wave		4.0	5.2	Λ
	IDD1	Operating mode	system clock	fMX=20MHz ^{note2}	Connect the crystal		4.0	5.2	mA
			Subsystem clock	k fSUB=32.768kHz note4	Input square wave		70	85	
			operation		Connect the crystal		70	85	uA
			I limb and all	fHOCO=64MHz, fIH	I=64MHz ^{note3}		2.0	6.8	
current ^{note1}			internal oscillator	fHOCO=48MHz, fIH	I=48MHz note3		1.6	5.0	mA
				fHOCO=32MHz, fIH	I=32MHz note3		1.2	3.5	
			High-speed main	fMX=20MHz note2	Input square wave		0.7	2.2	mA
	IDD2	Sleep mode	system clock	IIVIX-20IVIHZ 18882	Connect the crystal		0.7	2.2	IIIA
			Subsystem clock	fSUB=32.768kHz	Input square wave		1.2	14.5	uA
		operation	note5	Connect the crystal		1.2	14.5	uA	
			TA=-40°C~+70°C	C VDD=3.0V	_		0.8	4.0	
	IDD3 note 6	Deep sleep mode note7	TA=-40°C~+85°C	C VDD=3.0V			8.0	7.0	uA
			TA=-40°C~+105	°C VDD=3.0V			8.0	14.5	

Note:

- Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or VSS, EVSS. The values of the TYP. column include the current of the CPU executing the multiplication instruction (IDD1),not including the peripheral operation current. The values below the MAX. column include the current of the CPU executing the multiplication instruction (IDD1) and the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- 2) This is the case when the high-speed internal oscillator and the subsystem clock stop oscillating.
- 3) This is the case where the high-speed main system clock and subsystem clock stop oscillating.
- 4) This is the case when the high-speed internal oscillator and the high-speed main system clock stop oscillating.
- 5) This is the case when the high-speed internal oscillator and the high-speed main system clock stop oscillating. Contains the current flowing to the RTC, but does not include the 15-bit interval timer and watchdog timer current
- 6) Does not include current to RTC, 15-bit interval timer and watchdog timer.
- 7) For the current value when the subsystem clock is running in the deep sleep mode, please refer to the current value when the subsystem clock is running in the sleep mode.

www.mcu.com.cn 51 / 73 Rev 1.3

Note:

- fhoco: The clock frequency of the high-speed internal oscillator, flH: the system clock frequency provided by the high-speed internal oscillator.
- 2) fsub: External subsystem clock frequency (XT1/XT2 clock oscillation frequency).
- 3) fmx: External main system clock frequency (X1/X2 clock oscillation frequency).
- 4) TYP. The temperature condition of the value is TA=25°C.

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS=0V)

parameter	symbol		condition	MIN.	TYP.	MAX.	Unit
Low-speed internal oscillator operating current	IFIL note1				0.2		uA
RTC operating current	IRTC note1,2,3				0.04		uA
15-bit interval timer operating current	IIT note 1,2,4				0.02		uA
Watchdog timer operating current	IWDT note 1,2,5	fIL=15kHz			0.22		uA
A/D converter operating current	IADC note 1,6	ADC HS mode @64MHz			2.2		mA
		ADC HS mode (@4MHz		1.3		mA
		ADC LC mode (@24MHz		1.1		mA
		ADC LC mode (04MHz		0.8		mA
D/A converter operating current	IDAC note 1,8	Each channel			1.4		mA
PGA operating current		Each channel			480	700	uA
comparator operating current	ICMP note 1,9	Each channel	Does not use internal reference voltage		60	100	uA
comparator operating current	ICIVIP	Each channel	Use internal reference voltage		80	140	uA
LVD operating current	ILVD note 1,7				0.08		uA

注:

- 1) This is the current flowing through VDD.
- 2) This is the case when the high-speed internal oscillator and the high-speed system clock stop oscillating.
- 3) This is the current that only flows to the real-time clock (RTC) (not including the operating current of the low-speed internal oscillator and XT1 oscillator circuit). When the real-time clock is running in running mode or sleep mode, the current value of the microcontroller is IDD1 or IDD2 plus the value of IRTC. In addition, when low-speed internal oscillator is selected, IFIL must be added. IDD2 when the subsystem clock is running contains the operating current of the real-time clock.
- 4) This is the current that only flows to the 15-bit interval timer (not including the operating current of the low-speed internal oscillator and XT1 oscillator circuit). When the 15-bit interval timer is running in run mode or sleep mode, the current value of the microcontroller is the value of IDD1 or IDD2 plus IIT. In addition, when low-speed internal oscillator is selected, IFIL must be added.
- 5) This is the current that only flows to the watchdog timer (including the operating current of the low-speed internal oscillator). When the watchdog timer is running, the current value of the microcontroller is IDD1 or IDD2 or IDD3 plus the value of IWDT.
- 6) This is the current that only flows to the A/D converter. When the A/D converter is running in running mode or sleep mode, the current value of the microcontroller is IDD1 or IDD2 plus the value of IADC.
- 7) This is the current that only flows to the LVD circuit. In the case of LVD circuit operation, the current value of the microcontroller is the value of IDD1 or IDD2 or IDD3 plus ILVD.

www,mcu.com.cn 52 / 73 Rev 1.3

- 8) This is the current that only flows to the D/A converter. When the A/D converter is running in running mode or sleep mode, the current value of the microcontroller is IDD1 or IDD2 plus the value of IADC.
- 9) This is the current that only flows to the comparator circuit. When the comparator circuit is running, the current value of the microcontroller is the value of IDD1 or IDD2 or IDD3 plus ICMP.
- Note: 1. fil.: Clock frequency of low-speed internal oscillator.
 - 2. TYP. The temperature condition of the value is TA=25°C.

6.6 AC characteristic

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS=0V)

item	symbol		conditi	on	MIN	TYP	MAX	unit
Instruction cycle (Minimum instruction execution time)	TOV	The main system clock (fMAIN) runs		1.8V≤VDD≤5.5V	0.015625		1	μs
	TCY	Subsystem cl operation	ock (fSUB)	1.8V≤VDD≤5.5V	28.5	30.5	31.3	μs
External system	fEX	1.8V≤VDD≤5	5V		1.0		20.0	MHz
clock frequency	fEXS	1.8V≤VDD≤5	1.8V≤VDD≤5.5V				35.0	kHz
High and low level	tEXH, tEXL	1.8V≤VDD≤5.	5V		24			ns
width of external system clock input	tEXHS, tEXLS	1.8V≤VDD≤5	5V		13.7			μs
TI00 \sim TI03, TI10 \sim TI17 output frequency	tTIH, tTIL	1.8V≤VDD≤5.	5V		1/fMCK+10			ns
Input period of timer	tC	TAIO	2.4V≤EVD	D≤5.5V	100			ns
timerA	iC	TAIO	1.8V≤EVDD<2.4V		300			ns
The high and low level	tTAIH,	TAIO	2.4V≤EVDD≤5.5V		40			ns
width of timerA input	tTAIL		1.8V≤EVD	D<2.4V	120			ns

Note: fMCK: timer4, timer8 operating clock frequency of timer4 unit

www.mcu.com.cn 53 / 73 Rev 1.3

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS =0V)

item	symbol	co	ndition	MIN	TYP	MAX	unit
Timer M input high and low level width	tTMIH, tTMIL	TMIOA0, TMIOA1, T		3/fCLK			ns
Timer M forced cut-off	tTMSIL	P136/INTP0	2MHz <fclk≤48mhz< td=""><td>1</td><td></td><td></td><td>μs</td></fclk≤48mhz<>	1			μs
signal input low-level width	TIMSIL	PISO/INTPU	fCLK ≤ 2MHz	1/fCLK+1			μs
Timer B input high and low level width	tTBIH, tTBIL	TBIOA, TBIOB		2.5/fCLK			ns
TO00 \sim TO03, TO10 \sim TO17, TAIO0, TAO0,	0 ~ TO17, 0, TAO0,					16	MHz
TMIOA0, TMIOA1, TMIOB0, TMIOB1, TMIOC0, TMIOC1,	fTO	2.4V≤EVDD<4.0V				8	MHz
TMIOD0, TMIOD1, TBIOA, TBIOB Output frequency		1.8V≤EVDD<2.4V				4	MHz
		4.0V≤EVDD≤5.5V				16	MHz
CLKBUZ0, CLKBUZ1 Output frequency	fPCL	2.4V≤EVDD<4.0V				8	MHz
		1.8V≤EVDD<2.4V				4	MHz
High and low level width of interrupt input	tINTH, tINTL	INTP0 ∼ INTP11	1.8V≤EVDD≤5.5V	1			μs
High and low level width of key interrupt input	tKR	KR0 ~ KR7	1.8V≤EVDD≤5.5V	250			ns
RESETB low-level width	tRSL			10			μs

6.7 Peripheral features

6.7.1 Universal interface unit

1) UART mode

(TA=-40~+85°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS=0V)

item	condition			Specification Value		
item		condition	MIN	MAX	unit	
				fMCK/6	bps	
Transfer rate	1.8V ≤ EVDD ≤ 5.5V	The theoretical value of the maximum transfer		10.6	Mbps	
		rate fMCK=fCLK		10.0	ivibps	

(TA=+85~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS=0V)

item	condition			Specification Value		
item		Condition	MIN	MAX	unit	
	1.8V ≤ EVDD ≤ 5.5V			fMCK/12	bps	
Transfer rate		Theoretical value of the maximum transfer rate		5.3	Mbps	
		fMCK=fCLK		5.5	Ινίυμο	

2) Three-wire SPImode (master mode, internal clock output)

 $(TA=-40\sim+105^{\circ}C, 1.8V \leq EVDD = VDD \leq 5.5V, Vss=EVSS=0V)$

item	ayımla al	condition		-40 ∼ +8	35°C	+85 ~ +105	S°C	unit
item	symbol	C	oridition	MIN	MAX	MIN	MAX	unit
	SCLKp		4.0V ≤ EVDD ≤ 5.5V	31.25		62.5		ns
SCLKp		tKCY1 ≥ 2/fCLK	2.7V ≤ EVDD ≤ 5.5V	41.67		83.33		
cycle time	tKCY1	INCYT 2 2/ICLK	2.4V ≤ EVDD ≤ 5.5V	65		125		ns
			1.8V ≤ EVDD ≤ 5.5V	125		250		ns
00116		4.0V ≤ EVDD ≤ 5.5V		tKCY1/2-4		tKCY1/2-7		ns
SCLKp	tKH1,	2.7V ≤ EVDD ≤ 5.5	5V	tKCY1/2-5		tKCY1/2-10		ns
high/low level width	tKL1 2.4V ≤ EVDD ≤ 5.5		5V	tKCY1/2-10		tKCY1/2-20		ns
level width		1.8V ≤ EVDD ≤ 5.5	5V	tKCY1/2-19		tKCY1/2-38		ns
SDIp		4.0V ≤ EVDD ≤ 5.5	5V	12		23		ns
preparation	tSIK1	2.7V ≤ EVDD ≤ 5.5	5V	17		33		ns
time (to	ISIKI	2.4V ≤ EVDD ≤ 5.5	5V	20		38		ns
SCLKp↑)		1.8V ≤ EVDD ≤ 5.5	5V	28		55		ns
SDIp hold								
time (to	tKSI1	1.8V ≤ EVDD ≤ 5.5	5V	5		10		ns
SCLKp↑)								
SCLKp↓→SDO		1 9V < EVDD < 5 5V						
p output	tKSO1	$C=20pF^{\text{note1}}$	1.8V ≤ EVDD ≤ 5.5V		5		10	ns
delay time		0-20pr						

note1.: C is the load capacitance of the SCLKp and SDOp output lines.

www.mcu.com.cn 55 / 73 Rev 1.3

Note: Through the port input mode register and the port output mode register, the SDIp pin is selected as the normal input buffer and the SDOp the pin and SCLKp pin are selected as the usual output mode.

3) Three-wire SPImode (slave mode, external clock input) (TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS=0V)

14		114		− 40 ~ -	+85°C	+85 ~	+105°C	
item	symbol	condit	ion	MIN	MAX	MIN	MAX	unit
		4.0V ≤ EVDD ≤ 5.5V	20MHz < fMCK	8/fMCK		16/fMCK		ns
		4.0V ≤ EVDD ≤ 5.5V	fMCK ≤20MHz	6/fMCK		12/fMCK		ns
		2.7V ≤ EVDD ≤ 5.5V	16MHz < fMCK	8/fMCK		16/fMCK		ns
SCLKp	tKCY2	2.7 V \(\text{EVDD} \(\text{S} \) 5.5 V	fMCK ≤16MHz	6/fMCK		12/fMCK		ns
cycle time	IKC12	2.4V ≤ EVDD ≤ 5.5V		6/fMCK and		12/fMCK		ns
		2.4V \$ EVDD \$ 5.5V		500		and 1000		115
		1.8V ≤ EVDD ≤ 5.5V		6/fMCK and		12/fMCK		ns
		1.00 3 2 0 0 0 3 0.00		750		and 1500		115
SCLKp	tKH2,	4.0V ≤ EVDD ≤ 5.5V		tKCY1/2-7		tKCY1/2-14		ns
high/low	tKL2	2.7V ≤ EVDD ≤ 5.5V		tKCY1/2-8		tKCY1/2-16		ns
level width	INLZ	1.8V ≤ EVDD ≤ 5.5V		tKCY1/2-18		tKCY1/2-36		ns
SDIp		2.7V ≤ EVDD ≤ 5.5V		1/fMCK+20		1/fMCK+40		ns
preparation	tSIK2							
time (to		1.8V ≤ EVDD ≤ 5.5V		1/fMCK+30		1/fMCK+60		ns
SCLKp↑)								
SDIp hold								
time (to	tKSI2	1.8V ≤ EVDD ≤ 5.5V		1/fMCK+31		1/fMCK+62		ns
SCLKp↑)								
		2.7V ≤ EVDD ≤ 5.5V			2/fMCK+		2/fMCK+66	ns
SCLKp↓→S		C=30pF note1			44			
DOp	tKSO2	2.4V ≤ EVDD ≤ 5.5V			2/fMCK+		2/fMCK+113	ns
output delay		C=30pF note1			75			
time		1.8V ≤ EVDD ≤ 5.5V			2/fMCK+		2/fMCK+150	ns
		C=30pF note1			100			110

note1: C is the load capacitance of the SCLKp and SDOp output lines.

Note: Through the port input mode register and the port output mode register, The SDIp pin and SCLKp pin are selected as the normal input buffer and the SDOp pin is selected as the normal output mode.

www.mcu.com.cn 56 / 73 Rev 1.3

4) Four-wire SPI mode (slave mode, external clock input) (TA= −40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS=0V)

:4 a ma	symbol		a a a diki a a	$-40 \sim +85^{\circ}\text{C}$		+85 ∼ +105°C		
item	item symbol		condition		MAX	MIN	MAX	unit
		DAPmn=0	2.7V ≤ EVDD ≤ 5.5V	120		240		ns
SSI00 set up	toolk		1.8V ≤ EVDD ≤ 5.5V	200		400		ns
time		DAPmn=1	2.7V ≤ EVDD ≤ 5.5V	1/fMCK+120		1/fMCK+240		ns
			1.8V ≤ EVDD ≤ 5.5V	1/fMCK+200		1/fMCK+400		ns
		DAPmn=0	2.7V ≤ EVDD ≤ 5.5V	1/fMCK+120		1/fMCK+240		ns
SSI00 hold time tkss	ticol		1.8V ≤ EVDD ≤ 5.5V	1/fMCK+200		1/fMCK+400		ns
	INOOI	DAPmn=1	2.7V ≤ EVDD ≤ 5.5V	120		240		ns
			1.8V ≤ EVDD ≤ 5.5V	200		400		ns

Note: Through the port input mode register and the port output mode register, The SDIp pin and SCLKp pin are selected as the normal input buffer and the SDOp pin is selected as the normal output mode.

www.mcu.com.cn 57 / 73 Rev 1.3

5) Simple IIC mode

 $(TA=-40\sim+105^{\circ}C, 1.8V\leq EVDD=VDD\leq5.5V, Vss=EVSS=0V)$

14	a made at	4141	-40 ∼ +8	5°C	+85 ~ +105	5°C	14
item	symbol	condition	MIN	MAX	MIN	MAX	unit
		2.7V ≤ EVDD ≤ 5.5V		1000 ^{note1}		400 ^{nite1}	I/LI=
		Cb = 50 pF, Rb = $2.7 \text{ k}\Omega$		1000		400****	kHz
SCLr Clock	fSCL	1.8V ≤ EVDD ≤ 5.5V		400 ^{note1}		100 ^{note1}	kHz
frequency	ISCL	Cb = 100 pF, Rb = 3 k Ω		400		100	NI IZ
		1.8V ≤ EVDD ≤ 2.7V		300 ^{note1}		75 ^{note1}	kHz
		Cb = 100 pF, Rb = $5 \text{ k}\Omega$		300		73	KI IZ
		2.7V ≤ EVDD ≤ 5.5V	475		1200		ne
Hold time		Cb = 50 pF, Rb = $2.7 \text{ k}\Omega$	475		1200		ns
when SCLr is	tLOW	1.8V ≤ EVDD ≤ 5.5V	1150		4600		ns
low	ILOVV	Cb = 100 pF, Rb = $3 \text{ k}\Omega$	1130		4000		115
low		1.8V ≤ EVDD ≤ 2.7V	1550		6500		ns
		Cb = 100 pF, Rb = $5 \text{ k}\Omega$	1330		0300		115
Hold time		2.7V ≤ EVDD ≤ 5.5V	475		1200		ns
		Cb = 50 pF, Rb = $2.7 \text{ k}\Omega$	473		1200		113
when SCLr is	tHIGH	1.8V ≤ EVDD ≤ 5.5V	1150		4600		ns
high	unon	Cb = 100 pF, Rb = $3 \text{ k}\Omega$	1130		4000		113
riigii		1.8V ≤ EVDD ≤ 2.7V	1550		6500		ns
		Cb = 100 pF, Rb = $5 \text{ k}\Omega$	1000		0000		113
		2.7V ≤ EVDD ≤ 5.5V	1/fMCK+85 ^{note 2}		1/fMCK+220 ^{note 2}		ns
Data		Cb = 50 pF, Rb = $2.7 \text{ k}\Omega$	1/1WOIC+03		1/11/10/11/220		113
establishment	tSU:DAT	1.8V ≤ EVDD ≤ 5.5V	1/fMCK+145 ^{note 2}		1/fMCK+580 ^{note 2}		ns
time	100.5/11	Cb = 100 pF, Rb = $3 \text{ k}\Omega$	7,11,10		1,111101111000		110
(received)		1.8V ≤ EVDD ≤ 2.7V	1/fMCK+230 ^{note 2}		1/fMCK+1200 ^{note 2}		ns
		Cb = 100 pF, Rb = $5 \text{ k}\Omega$	1711/10111-200		1/11WOR: 1200		110
		2.7V ≤ EVDD ≤ 5.5V		305		770	ns
		Cb = 50 pF, Rb = $2.7 \text{ k}\Omega$		303		770	113
Data retention	tHD:DAT	1.8V ≤ EVDD ≤ 5.5V		355		1420	ns
time (send)	a ib.bA1	Cb = 100 pF, Rb = 3 k Ω		000		1720	110
		1.8V ≤ EVDD ≤ 2.7V		405		2070	ns
		Cb = 100 pF, Rb = 5 k Ω		100		2010	110

Note: 1. Must be set to at least fMCK/4.

2. The set value of fMCK cannot exceed the holding time of SCLr= "L" and SCLr= "H".

www.mcu.com.cn 58 / 73 Rev 1.3

6.7.2 Serial interface IICA

1) I2C standard mode

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS=0V)

14		4141	Specificat	tion Value	unit
item	symbol	condition	MIN	MAX	unit
SCLAr clock frequency	fSCL	Standard mode: fCLK≥1MHz		100	kHz
Start condition set up time	tSU: STA		4.7		μs
Start condition hold time note1	tHD: STA		4.0		μs
Hold time when SCLAr is low	tLOW		4.7		μs
Hold time when SCLAr is high	tHIGH		4.0		μs
Data establishment time (received)	tSU:DAT		250		ns
Data retention time (send) ^{note2}	tHD:DAT		0	3.45	μs
Stop condition set up time	tSU: STO		4.0		μs
Bus idle time	tBUF		4.7		μs

note:

- a) Generate the first clock pulse after generating the start condition or restarting the condition.
- b) During normal transmission, tHD: the maximum value of DAT (MAX.) needs to be guaranteed, and it is necessary to wait for an acknowledgement (ACK).

Note:

The MAX. value of Cb (communication line capacitance) of each mode and the value of Rb (communication line pull-up resistance value) at this time are as follows:

Standard mode: Cb=400pF, Rb=2.7kΩ

2) I2C fast mode

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS=0V)

itom	aymbal	condition	Specificati	on Value	unit
item	symbol	Condition	MIN	MAX	unit
SCLAr clock frequency	fSCL	Fast mode: fCLK≥3.5MHz		400	kHz
Start condition set up time	tSU: STA		0.6		μs
Start condition hold time note1	tHD: STA		0.6		μs
Hold when SCLAr is low time	tLOW		1.3		μs
Hold when SCLAr is high time	tHIGH		0.6		μs
Data set up time (received)	tSU: DAT		100		ns
Data hold time (send) ^{note2}	tHD: DAT		0	0.9	μs
Stop condition set up time	tSU: STO		0.6		μs
Bus idle time	tBUF		1.3		μs

Note:

- a) Generate the first clock pulse after generating the start condition or restarting the condition.
- b) During normal transmission, tHD: the maximum value of DAT (MAX.) needs to be guaranteed, and it is necessary to wait for an acknowledgement (ACK).

Note: The MAX. value of Cb (communication line capacitance) of each mode and the value of Rb (communication line pull-up resistance value) at this time are as follows:

Fast mode: Cb=320pF, Rb=1.1kΩ

3) I2C enhanced fast mode

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVSS=0V)

ikawa	averala al	condition	Specifica	unit	
item	symbol	condition	MIN	MAX	unit
SCLAr clock frequency	fSCL	Enhanced fast mode: fCLK≥10MHz		1000	kHz
Start condition set up time	tSU: STA		0.26		μs
Start condition hold time note1	tHD: STA		0.26		μs
Hold time when SCLAr is low	tLOW		0.5		μs
When SCLAr is high hold time	tHIGH		0.26		μs
Data set up time (received)	tSU: DAT		50		ns
Data hold time (send) ^{note2}	tHD: DAT		0	0.45	μs
Stop condition set up time	tSU: STO		0.26		μs
Bus idle time	tBUF		0.5		μs

note:

- a) Generate the first clock pulse after generating the start condition or restarting the condition.
- b) During normal transmission, tHD: the maximum value of DAT (MAX.) needs to be guaranteed, and it is necessary to wait for an acknowledgement (ACK).

Note: The MAX. value of Cb (communication line capacitance) of each mode and the value of Rb (communication line pull-up resistance value) at this time are as follows:

Enhanced fast mode: Cb=120pF, Rb=1.1k Ω

www.mcu.com.cn 60 / 73 Rev 1.3

6.8 Analog characteristic

6.8.1 A/D converter characteristic

The distinction of A/D converter characteristic

Reference voltage Input channel	Reference voltage (+) =AVREFP Reference voltage () =AVREFM	Reference voltage (+) =VDD Reference voltage () =VSS
ANI0~ANI20		
Internal reference voltage, output voltage	See 6.8.1(1) _°	See 6.8.1 (2)。
of temperature sensor		

Select the case of reference voltage (+)=AV_{REFP}/ANI0, reference voltage (−)=AV_{REFM}/ANI1
 (TA=-40~+105°C, 1.8V≤AVREFP≤EVDD=VDD≤5.5V, VSS=0V, reference voltage (+)=AVREFP, reference voltage (−)=AVREFM=0V)

item	symbol	cond	ition	MIN.		TYP.	MAX.	unit
Resolution	RES					12		bit
Composite error	AINL	12-bit resolution	1.8V ≤AV _{REFP} ≤5.5V			3		LSB
		12-bit resolution						
		Conversion target:	1.8V≤VDD≤5.5V	45				Tmclk
		ANI2~ANI15						
Conversion time note3	t _{CONV}	12-bit resolution Conversion object: internal reference voltage, temperature sensor output voltage, PGA output voltage	1.8V≤VDD≤5.5V	72				Tmclk
Zero error note1	E _{ZS}	12-bit resolution	1.8V ≤AV _{REFP} ≤5.5V			0		LSB
Full scale error	E _{FS}	12-bit resolution	1.8V ≤AV _{REFP} ≤5.5V			0		LSB
Integral linearity error note1	ILE	12-bit resolution	1.8V ≤AV _{REFP} ≤5.5V				±1	LSB
Differential linearity error note1	DLE	12-bit resolution	1.8V ≤AV _{REFP} ≤5.5V				±1.5	LSB
		ANI2~ANI20	0			AV_{REFP}	V	
Analog input	V _{AIN}	Internal reference voltage (1.8V≤VDD≤5.5V)				V _{BGR} note	e2	V
voltage		The output voltage of the temperature sensor (1.8V≤VDD≤5.5V)			V	TMPS25 no	ote2	V

Note: 1. Does not include quantization error (±1/2 LSB).

- 2. Please refer to "6.8.2 Characteristic of Temperature Sensor/Internal Reference Voltage"。
- 3. Tmclk is the AD action clock cycle, the maximum action frequency is 48MHz.

www.mcu.com.cn 61 / 73 Rev 1.3

2) Select the case of reference voltage (+)= V_{DD} and reference voltage (-)= V_{SS}

 $(T_A = -40 \sim +105 ^{\circ}\text{C}, \ 1.8 \text{V} \leqslant \text{EV}_{DD} = \text{V}_{DD} \leqslant 5.5 \text{V}, \ \text{V}_{SS} = \text{EV}_{SS} = 0 \text{V}, \ \text{reference voltage} \ \ (+) = \text{V}_{DD}, \ \text{reference voltage} \ \ (-) = \text{V}_{SS})$

item	symbol	condition		MIN.	TYP.	MAX.	unit
Resolution	RES				12		bit
Composite error note 1	AINL	12-bit resolution	1.8V ≤AV _{REFP} ≤5.5V		6		LSB
Conversion time note 3 to		12-bit resolution Conversion target: ANI0~ANI15	1.8V≤VDD≤5.5V	45			Tmclk
	^t CONV	12-bit resolution Conversion object: internal reference voltage, temperature sensor output voltage, PGA output voltage	1.8V≤VDD≤5.5V	72			Tmclk
Zero error note1	EZS	12-bit resolution	1.8V ≤AV _{REFP} ≤5.5V		0		LSB
Full scale error note 1	E _{FS}	12-bit resolution	1.8V ≤AV _{REFP} ≤5.5V		0		LSB
Integral linearity error note 1	ILE	12-bit resolution	1.8V ≤AV _{REFP} ≤5.5V			±2	LSB
Differential linearity error note 1	DLE	12-bit resolution	1.8V ≤AV _{REFP} ≤5.5V			±3	LSB
		ANI0~ANI7		0		V_{DD}	V
		ANI8~ANI20		0		EV _{DD}	V
Analog input voltage	V_{AIN}	Internal reference voltage (1.8V≤VDD≤5.5V)		V _{BGR} note2			V
		The output voltage of the temperature sensor (1.8V≤VDD≤5.5V)		V _{TMPS25} note2			V

Note: 1. Does not include quantization error (±1/2 LSB).

- 2. Please refer to "6.8.2 Characteristic of Temperature Sensor/Internal Reference Voltage".
- 3. Tmclk is the AD action clock cycle, the maximum action frequency is 64MHz.

6.8.2 Characteristic of temperature sensor/internal reference voltage

(TA=-40~+105°C, 1.8V≤VDD≤5.5V, VSS=EVSS=0V)

item	symbol	condition	MIN	TYP	MAX	unit
The output voltage of the temperature sensor	VTMPS25	TA=25°C		1.09		٧
Internal reference voltage	VBGR	TA=-40~105°C	1.38	1.45	1.5	V
Temperature Coefficient	FVTMPS			-3.5		mV/°C
Stable operation waiting time	tAMP		5			μs

6.8.3 D/A converter

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, VSS=EVSS=0V)

item	symbol	condition			TYP.	MAX.	unit	
Resolution	RES					8	bit	
O AINI	AINL	Rload=4M Ω	1.8V≤VDD≤5.5V			±2.5	LSB	
Composite error		Rload=8M Ω	1.8V≤VDD≤5.5V			±2.5	LSB	
stable schedule	tSET	10FT	Clard-20rF	2.7V ≤ VDD ≤ 5.5V			3	μs
		Cload=20pF	1.8V ≤ VDD < 2.7V			6	μs	

6.8.4 comparator

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVss=0V)

item	symbol	condition		MIN	TYP	MAX	unit
input deviation voltage	V _{IOCMP}				±10	±40	mV
input voltage range	lvcmp			0		VDD	V
Internal reference voltage deviation	A)/	CmRVM register:	7FH ~ 80H (m = 0, 1)			±2	LSB
Internal reference voltage deviation	ΔV_{IREF}	others				±1	LSB
Response time	tCR, tCF	input amplitude ±	100mV		70	150	ns
Stable eneration time	tCMP	CMPn=0->1	VDD= 3.3 ~ 5.5V			1	
Stable operation time _{note1}	ICIVIF	CIVIPII-0-21	VDD= 1.8 ~ 3.3V			3	μs
Reference voltage stabilization time	tVR	CVRE=0->1 note2				20	μs
operating current	I _{CMPDD}	Separately, it is de	Separately, it is defined as the operation current of peripheral functions.				

note1: The time required from the enable of the comparator action (CMPnEN=0 —>1) to meeting the various DC/AC style requirements of CMP

note2: After the internal reference voltage generator is enabled (by setting the CVREm bit to 1; m = 0 to 1), the comparator output can be enabled after the reference voltage stabilization time (CnOE bit = 1; n = 0 to 1)

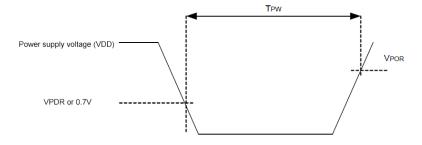
6.8.5 Programmable gain amplifier PGA

 $(TA=-40\sim+105^{\circ}C, 1.8V\leq EVDD=VDD\leq5.5V, Vss=EVss=0V)$

symbol	parameter	CC	ondition	MIN.	TYP.	MAX.	Unit
Input deviation voltage	V _{IOPGA}					±10	mV
Input voltage range	V _{IPGA}			0		0.9xVDD/Gain	٧
Output voltage	V _{IOHPGA}			0.93xVDD			>
range	V_{IOLPGA}					0.07xVDD	V
		x4				±1	%
		x8				±1	%
		x10				±1	%
Gain deviation		x12				±2	%
		x14				±2	%
		x16				±2	%
		x32				±3	%
SI		rise Vin= 0.1VDD/gain to	4.0 V ≤ VDD ≤ 5.5 V (Other than x32)	3.5			
	SR _{RPGA}		4.0 V ≤ VDD ≤ 5.5 V (x32)	3.0			
	90% of output voltage amplitude	1.8 V ≤ VDD ≤ 4.0V	0.5			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Conversion rate		drop	4.0 V ≤ VDD ≤ 5.5 V (Other than x32)	3.5			V/us
	SR_{FPGA}	0.9VDD/gain. 90 to	4.0 V ≤ VDD ≤ 5.5 V (x32)	3.0			
		10% of output voltage amplitude	1.8 V ≤ VDD ≤ 4.0V	0.5			
		x4				5	us
		x8				5	us
Otable an anti-		x10				5	us
Stable operation time Note 1	t _{PGA}	x12				10	us
		x14				10	us
		x16				10	us
		x32				10	us
Working current	I _{PGADD}	Separat	tely, it is defined as the operat	ion current of p	peripheral	functions.	

Note1: The time required from PGA action enable (PGAEN=1) to meeting various DC and AC style requirements of PGA.

www.mcu.com.cn 64 / 73 Rev 1.3



6.8.6 POR circuit characteristic

(TA=-40~+105°C, Vss=0V)

item	symbol	condition	MIN	TYP	MAX	unit
VPOR VPOR		When the power supply voltage rises		1.60	1.75	V
Detection voltage	VPDR	When the power supply voltage drops	1.37	1.50	1.55	V
Minimum pulse widthnote1	TPW		300			μs

note1: This is the time required for POR to reset when VDD is lower than VPDR. In addition, in the deep sleep mode, when the main system clock (fMAIN) is stopped by setting bit0 (HIOSTOP) and bit7 (MSTOP) of the clock operation status control register (CSC), the oscillation of the main system clock (fMAIN) is stopped from VDD lower than 0.7V to rise above VPOR. Time required for POR reset.

www.mcu.com.cn 65 / 73 Rev 1.3

6.8.7 LVD circuit characteristic

1) Reset mode and interrupt mode

(TA=-40~+105°C, VPDR≤VDD≤5.5V, VSS=0V)

item	symbol	condition	MIN	TYP	MAX	unit
	\	power supply voltage rises		4.06		V
	VLVD0	power supply voltage drops		3.98		V
	VLVD1	power supply voltage rises		3.75		V
	VLVDI	power supply voltage drops		3.67		V
	\/I\//D0	power supply voltage rises		3.13		V
	VLVD2	power supply voltage drops		3.06		V
	\/I\/\D2	power supply voltage rises		3.02		V
	VLVD3	power supply voltage drops		2.96		V
	\/I\/\D4	power supply voltage rises		2.92		V
	VLVD4	power supply voltage drops		2.86		V
	VIVDE	power supply voltage rises		2.81		V
	VLVD5	power supply voltage drops		2.75		V
Detection voltage	VLVD6	power supply voltage rises		2.71		V
		power supply voltage drops		2.65		V
	\	power supply voltage rises		2.61		V
	VLVD7	power supply voltage drops		2.55		V
	\/I\/\/D0	power supply voltage rises		2.50		V
	VLVD8	power supply voltage drops		2.45		V
	\/I\//D0	power supply voltage rises		2.09		V
	VLVD9	power supply voltage drops		2.04		V
) // \ /D 40	power supply voltage rises		1.98		V
	VLVD10	power supply voltage drops		1.94		V
	\(I)\(D44	power supply voltage rises		1.88		V
	VLVD11	power supply voltage drops		1.84		V
Minimum pulse width	tLW		300			μs
Detection delay					300	μs

2) Interrupt and reset mode

 $(TA=-40\sim+105^{\circ}C, VPDR \leq VDD \leq 5.5V, VSS=0V)$

item	symbo		COI	ndition	MIN.	TYP.	MAX.	unit
	V_{LVDA0}	V _{POC2}	, V _{POC1} , V _{POC0} =0, 0,	0, Decrease reset voltage		1.63		V
	\/		11/104 11/100-1 0	rising reset release voltage		1.77		V
	V_{LVDA1}		LVIS1, LVIS0=1, 0	drop interrupt voltage		1.73		V
	\/		11/104 11/100-0 4	rising reset release voltage		1.88		V
	V_{LVDA2}		LVIS1, LVIS0=0, 1	drop interrupt voltage		1.84		V
	\/		LVIS1, LVIS0=0, 0	rising reset release voltage		2.92		V
\	V_{LVDA3}		LVIST, LVISU-0, 0	drop interrupt voltage		2.86		V
	V_{LVDB0}	V _{POC2}	, V _{POC1} , V _{POC0} =0, 0,	1, decrease reset voltage		1.84		V
	\/		LVIS1, LVIS0=1, 0	rising reset release voltage		1.98		V
	V_{LVDB1}		LVIS1, LVISU-1, U	drop interrupt voltage		1.94		V
	\/		LVIS1, LVIS0=0, 1	rising reset release voltage		2.09		V
	V_{LVDB2}		LVIST, LVISU-U, T	drop interrupt voltage		2.04		V
	\/	V _{LVDB3}	LVIS1, LVIS0=0, 0	rising reset release voltage		3.13		V
Interrupt &	VLVDB3			drop interrupt voltage		3.06		V
reset mode	V_{LVDC0}	V _{POC2}	, V _{POC1} , V _{POC0} =0, 1,		2.45		V	
		LVIS1, LVIS0=1, 0	rising reset release voltage		2.61		V	
	V _{LVDC1}		LVIS1, LVISU-1, U	drop interrupt voltage		2.55		V
	V		11/191 11/190-0 1	rising reset release voltage		2.71		V
	V_{LVDC2}		LVIS1, LVIS0=0, 1	drop interrupt voltage		2.65		V
	V		LVIS1, LVIS0=0, 0	rising reset release voltage		3.75		V
	V _{LVDC3}		EVIO1, EVIOU-0, 0	drop interrupt voltage		3.67		V
	V_{LVDD0}	V _{POC2}	, V _{POC1} , V _{POC0} =0, 1,	1, decrease reset voltage		2.75		V
	V		LVIS1, LVIS0=1, 0	rising reset release voltage		2.92		V
	V_{LVDD1}		LVIO1, LVIOU-1, U	drop interrupt voltage		2.86		V
	V	V	11/191 11/190-0 1	rising reset release voltage		3.02		V
	V_{LVDD2}		LVIS1, LVIS0=0, 1	drop interrupt voltage		2.96		V
	V= = :		rising reset release voltage		4.06		V	
	V_{LVDD3}		LVIG1, LVIGU-U, U	drop interrupt voltage		3.98		V

6.8.8 The rising slope of the power supply voltage characteristic

(TA=-40~+105°C, VSS=0V)

item	symbol	condition	MIN	TYP	MAX	unit
The rising slope of the power supply voltage	SVDD				54	V/ms

www.mcu.com.cn 67 / 73 Rev 1.3

6.9 Memory characteristic

6.9.1 Flash Memory characteristic

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVss=0V)

Symbol	Parameter	Parameter Conditions		MAX	Unit
Tprog	Word Program(32bit)	Ta=–40∼+105°C		30	μs
Toroco	Sector erase(512B)	Ta=–40∼+105°C	4	5	ms
Terase	Chip erase	Ta=–40∼+105°C	20	40	ms
Nend	Endurance	Ta=–40∼+105°C	100		kcycle
tRET	Data retention	100 kcycle(note2) at Ta = 105°C	20		Years

Note1: Data based on characterization results, not tested in production.

Note2: Cycling performed over the whole temperature range.

6.9.2 RAM Memory characteristic

(TA=-40~+105°C, 1.8V≤EVDD=VDD≤5.5V, Vss=EVss=0V)

Symbol	Parameter	Conditions	MIN	MAX	Unit
Vramhold	RAM Hold Voltage	Ta=–40∼+105°C	0.8		V

www.mcu.com.cn 68 / 73 Rev 1.3

6.10 Electrical sensitivity characteristic

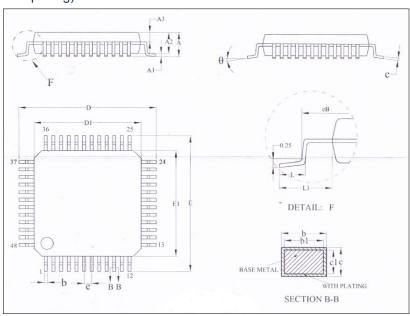
6.10.1 Electrostatic discharge (ESD) characteristic

Symbol	Parameter	Conditions	Class	Passed Value	Unit
\/=05(UDL0)	Electrostatic discharge voltage	TA = +25°C, conforming to	3A	6000	V
VESD(HBM)	(human body model)	JESD22-A114	3A		

Note: Data based on characterization results, not tested in production.

6.10.2 Static latch-up(LU) characteristic

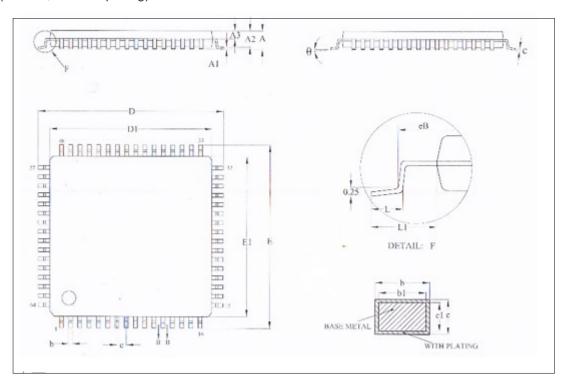
5	Symbol	Parameter	Conditions	Class
	LII Otafia	Chatia latah um alam	TA = 125°C conforming to 1500705	1
	LU	Static latch-up class	TA = +25°C conforming to JESD78E	LevelA


Note: Data based on characterization results, not tested in production.

7 Package size chart

7.1 48-pin product

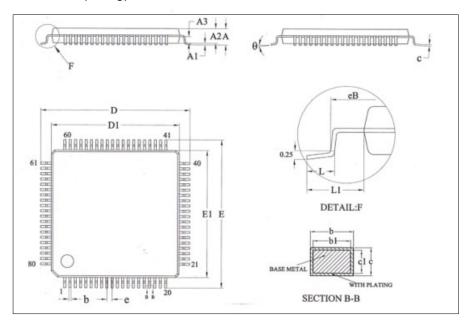
48LQFP (7x7mm, 0.5mm spacing)



Symbol		Millimeter	
	Min	Nom	Max
А	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	-	0.26
b1	0.17	0.20	0.23
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
eB	8.10	-	8.25
е		0.50BSC	
L	0.45	-	0.75
L1		1.00REF	
θ	0	-	7°

7.2 64-pin product

64LQFP (7x7mm, 0.4mm spacing)



Cymphol		Millimeter	
Symbol	Min	Nom	Max
А	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.16	-	0.24
b1	0.15	0.18	0.21
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
eB	8.10	-	8.25
е	0.40BSC		
L	0.45	-	0.75
L1		1.00REF	
θ	0	-	7°

7.3 80-pin product

80LQFP (12×12mm, 0.5mm spacing)

Symbol		Millimeter	
	Min	Nom	Max
Α	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	-	0.26
b1	0.17	0.20	0.23
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	13.80	14.00	14.20
D1	11.90	12.00	12.10
E	13.80	14.00	14.20
E1	11.90	12.00	12.10
eB	13.05	-	13.25
е		0.50BSC	
L	0.45	0.60	0.75
L1		1.00REF	
θ	0	-	7°

8 Revision History

Davisian	Dete	Modify content		
Revision	Date	Page/section	content	
1.0	2021.01.11		Initial verison	
1.1	2021.07.20	6.10	Update the electrical sensitivity characteristic data	
1.2	2021.08.24	6.4.3	Fix some mistakes	
1.3	2022.01.24	P2	Fix some mistakes	

www.mcu.com.cn 73 / 73 Rev 1.3